Skip to content

Latest commit

 

History

History
302 lines (240 loc) · 28.1 KB

README.md

File metadata and controls

302 lines (240 loc) · 28.1 KB

Semantic Kernel concepts by feature

Down below you can find the code snippets that demonstrate the usage of many Semantic Kernel features.

Running the Tests

You can run those tests using the IDE or the command line. To run the tests using the command line run the following command from the root of Concepts project:

dotnet test -l "console;verbosity=detailed" --filter "FullyQualifiedName=NameSpace.TestClass.TestMethod" 

Example for ChatCompletion/OpenAI_ChatCompletion.cs file, targeting the ChatPromptSync test:

dotnet test -l "console;verbosity=detailed" --filter "FullyQualifiedName=ChatCompletion.OpenAI_ChatCompletion.ChatPromptSync"

Table of Contents

Agents - Different ways of using Agents

AudioToText - Different ways of using AudioToText services to extract text from audio

FunctionCalling - Examples on Function Calling with function call capable models

Caching - Examples of caching implementations

ChatCompletion - Examples using ChatCompletion messaging capable service with models

DependencyInjection - Examples on using DI Container

Filtering - Different ways of filtering

Functions - Invoking Method or Prompt functions with Kernel

ImageToText - Using ImageToText services to describe images

LocalModels - Running models locally

Memory - Using AI Memory concepts

Optimization - Examples of different cost and performance optimization techniques

Planners - Examples on using Planners

Plugins - Different ways of creating and using Plugins

PromptTemplates - Using Templates with parametrization for Prompt rendering

RAG - Retrieval-Augmented Generation

Search - Search services information

TextGeneration - TextGeneration capable service with models

TextToAudio - Using TextToAudio services to generate audio

TextToImage - Using TextToImage services to generate images

Configuration

Option 1: Use Secret Manager

Concept samples will require secrets and credentials, to access OpenAI, Azure OpenAI, Bing and other resources.

We suggest using .NET Secret Manager to avoid the risk of leaking secrets into the repository, branches and pull requests. You can also use environment variables if you prefer.

To set your secrets with Secret Manager:

cd dotnet/src/samples/Concepts
dotnet user-secrets init
dotnet user-secrets set "OpenAI:ServiceId" "gpt-3.5-turbo-instruct"
dotnet user-secrets set "OpenAI:ModelId" "gpt-3.5-turbo-instruct"
dotnet user-secrets set "OpenAI:ChatModelId" "gpt-4"
dotnet user-secrets set "OpenAI:ApiKey" "..."
...

Option 2: Use Configuration File

  1. Create a appsettings.Development.json file next to the Concepts.csproj file. This file will be ignored by git, the content will not end up in pull requests, so it's safe for personal settings. Keep the file safe.
  2. Edit appsettings.Development.json and set the appropriate configuration for the samples you are running.

For example:

{
  "OpenAI": {
    "ServiceId": "gpt-3.5-turbo-instruct",
    "ModelId": "gpt-3.5-turbo-instruct",
    "ChatModelId": "gpt-4",
    "ApiKey": "sk-...."
  },
  "AzureOpenAI": {
    "ServiceId": "azure-gpt-35-turbo-instruct",
    "DeploymentName": "gpt-35-turbo-instruct",
    "ChatDeploymentName": "gpt-4",
    "Endpoint": "https://contoso.openai.azure.com/",
    "ApiKey": "...."
  },
  // etc.
}

Option 3: Use Environment Variables

You may also set the settings in your environment variables. The environment variables will override the settings in the appsettings.Development.json file.

When setting environment variables, use a double underscore (i.e. "__") to delineate between parent and child properties. For example:

  • bash:

    export OpenAI__ApiKey="sk-...."
    export AzureOpenAI__ApiKey="...."
    export AzureOpenAI__DeploymentName="gpt-35-turbo-instruct"
    export AzureOpenAI__ChatDeploymentName="gpt-4"
    export AzureOpenAIEmbeddings__DeploymentName="azure-text-embedding-ada-002"
    export AzureOpenAI__Endpoint="https://contoso.openai.azure.com/"
    export HuggingFace__ApiKey="...."
    export Bing__ApiKey="...."
    export Postgres__ConnectionString="...."
  • PowerShell:

    $env:OpenAI__ApiKey = "sk-...."
    $env:AzureOpenAI__ApiKey = "...."
    $env:AzureOpenAI__DeploymentName = "gpt-35-turbo-instruct"
    $env:AzureOpenAI__ChatDeploymentName = "gpt-4"
    $env:AzureOpenAIEmbeddings__DeploymentName = "azure-text-embedding-ada-002"
    $env:AzureOpenAI__Endpoint = "https://contoso.openai.azure.com/"
    $env:HuggingFace__ApiKey = "...."
    $env:Bing__ApiKey = "...."
    $env:Postgres__ConnectionString = "...."