-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathchat.py
43 lines (34 loc) · 1.3 KB
/
chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from utils import Prompter
class pipeline(object):
def __init__(self, model_path=None, gpu=False):
self.model_path = model_path
self.use_gpu = gpu
self.prompter = Prompter()
print("Loading model's weights ...")
self.load_model()
def load_model(self):
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_path,
torch_dtype=torch.bfloat16)
if self.use_gpu:
self.model.cuda()
def to_cuda(self, inputs):
return {k: v.cuda() for k, v in inputs.items()}
def generate(self, instruction, prompt_input=None):
prompt = self.prompter.generate_prompt(instruction, prompt_input)
inputs = self.tokenizer(prompt, return_tensors='pt')
if self.use_gpu:
inputs = self.to_cuda(inputs)
output = self.model.generate(
**inputs,
max_new_tokens=256,
do_sample=True,
top_p=0.75,
top_k=40
)
output = self.tokenizer.decode(output[0], skip_special_tokens=True)
response = self.prompter.get_response(output)
return response