-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrl_training.py
246 lines (214 loc) · 8.77 KB
/
rl_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import os, json
import argparse
from typing import Optional, List
import torch
import torch.nn as nn
from accelerate import Accelerator
from datasets import load_dataset, Dataset
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
AutoConfig,
pipeline,
set_seed,
)
import trlx
from trlx.data.configs import (
ModelConfig,
OptimizerConfig,
SchedulerConfig,
TokenizerConfig,
TrainConfig,
TRLConfig,
)
from trlx.models.modeling_ppo import PPOConfig
from utils import Prompter
prompter = Prompter()
def get_model_trl_config(args):
print("Setup config...")
return TRLConfig(
train=TrainConfig(
seq_length=args.max_seq_length,
epochs=args.num_epochs,
total_steps=10000,
batch_size=args.ppo_batch_size,
eval_interval=args.eval_freq,
minibatch_size=1,
checkpoint_interval=10000,
pipeline="PromptPipeline",
trainer="AcceleratePPOTrainer",
save_best=False,
checkpoint_dir=args.output_dir,
),
model=ModelConfig(
model_path=args.sft_model_path,
num_layers_unfrozen=args.num_layers_unfrozen,
),
tokenizer=TokenizerConfig(
tokenizer_path=args.tokenizer_path,
truncation_side='left',
padding_side='left'
),
optimizer=OptimizerConfig(
name="adamw",
kwargs=dict(lr=args.learning_rate, betas=[0.9, 0.95], eps=1.0e-8, weight_decay=args.weight_decay)
),
scheduler=SchedulerConfig(name="cosine_annealing", kwargs=dict(T_max=10000, eta_min=1.0e-6)),
method=PPOConfig(
name="PPOConfig",
num_rollouts=args.num_rollouts,
chunk_size=args.chunk_size,
ppo_epochs=args.ppo_epochs,
init_kl_coef=args.kl_coef, # should choose either 0.1 or 0.05
target=6,
horizon=10000,
gamma=1,
lam=0.95,
cliprange=0.2,
cliprange_value=0.2,
vf_coef=1.0,
scale_reward=None,
ref_mean=None,
ref_std=None,
cliprange_reward=10,
gen_kwargs={
"max_new_tokens": args.max_new_tokens,
"do_sample": True,
"top_k": 0,
"top_p": 1,
"temperature": 1,
})
)
def create_reward_fn(args):
if accelerator.is_main_process:
print("Setup reward model")
# if os.environ.get("RANK", "0") == "0":
reward_tokenizer = AutoTokenizer.from_pretrained(args.reward_tokenizer_path)
config = AutoConfig.from_pretrained(args.reward_model_path)
if "Llama" in config.architectures[0]:
print("Setting EOS, BOS, UNK, and PAD tokens for LLama tokenizer")
reward_tokenizer.add_special_tokens(
{
"eos_token": "</s>",
"bos_token": "<s>",
"unk_token": "<unk>",
}
)
reward_tokenizer.pad_token_id = (
0
)
reward_tokenizer.truncation_side = "left"
reward_tokenizer.padding_side = "left"
reward_model = AutoModelForSequenceClassification.from_pretrained(
args.reward_model_path,
torch_dtype=torch.bfloat16,
)
reward_model.requires_grad_(False)
reward_model.config.pad_token_id = reward_tokenizer.pad_token_id
reward_model.config.use_cache = True
rm_device = torch.cuda.device_count() - 1
print("Rewad device:", rm_device)
reward_model.eval().to(rm_device)
sigmoid_fn = nn.Sigmoid()
def get_reward(samples: List[str]):
all_scores = []
for i in range(0, len(samples), args.rw_batch_size):
batch = reward_tokenizer(
samples[i : i + args.rw_batch_size],
padding=True,
truncation=True,
max_length=768,
return_tensors="pt").to(rm_device)
with torch.no_grad():
scores = reward_model(
batch['input_ids'],
attention_mask=batch['attention_mask']
)[0].squeeze(-1).cpu()
all_scores.append(scores)
scores = torch.hstack(all_scores)
return scores
def reward_fn(samples: List[str], original_output: List[str], **kwargs) -> torch.Tensor:
rewards = get_reward(samples)
return rewards
return reward_fn
else:
return True
def create_datasets(args, save_test_set=False):
print("Start create_datasets")
def create_prompt(data_point):
prompt = prompter.generate_prompt(
data_point["instruction"],
data_point["input"],
# data_point["output"],
)
original_output = prompter.generate_prompt(
data_point["instruction"],
data_point["input"],
data_point["output"],
)
return {'prompt': prompt, 'original_output': original_output}
prompter = Prompter()
try:
dataset = load_dataset('json', split=args.split, data_files=args.data_path)
except:
with open(args.data_path, 'r', encoding='utf-8') as f:
dataset = json.loads(f.read())
for entry in dataset:
for k, v in entry.items():
if not isinstance(v, str):
entry[k] = str(v)
dataset = Dataset.from_list(dataset)
dataset = dataset.train_test_split(test_size=args.size_valid_set, seed=args.seed)
train_prompts = dataset["train"].shuffle().map(create_prompt)
valid_prompts = dataset["test"].map(create_prompt)
train_prompts = [{'prompt': instance['prompt'], 'original_output': instance['original_output']} for instance in train_prompts]
valid_prompts = [{'prompt': instance['prompt'], 'original_output': instance['original_output']} for instance in valid_prompts]
print(f"Size of the train set: {len(train_prompts)}. Size of the validation set: {len(valid_prompts)}")
if save_test_set:
dataset["test"].to_json('dataset/val_data_hlhf.json', force_ascii=False)
return train_prompts, valid_prompts
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--sft_model_path", type=str, default="bloom-560m",
help="LLaMa/Bloom weight that has trained by supervised finetuning")
parser.add_argument("--tokenizer_path", type=str, default="bloom-560m",
help="LLaMa/Bloom tokenizer path")
parser.add_argument("--data_path", type=str, default="dataset/data_rlhf.json")
parser.add_argument("--reward_model_path", type=str, default="checkpoints/reward_model/checkpoint-7000")
parser.add_argument("--reward_tokenizer_path", type=str, default="bloom-560m")
parser.add_argument("--rw_batch_size", type=int, default=16)
parser.add_argument("--split", type=str, default="train")
parser.add_argument("--size_valid_set", type=float, default=0.05)
parser.add_argument("--max_seq_length", type=int, default=512)
parser.add_argument("--num_epochs", type=int, default=5)
parser.add_argument("--ppo_epochs", type=int, default=4)
parser.add_argument("--num_layers_unfrozen", type=int, default=5)
parser.add_argument("--ppo_batch_size", type=int, default=2)
parser.add_argument("--num_rollouts", type=int, default=128)
parser.add_argument("--chunk_size", type=int, default=16)
parser.add_argument("--kl_coef", type=int, default=0.1)
parser.add_argument("--learning_rate", type=float, default=1e-6)
parser.add_argument("--weight_decay", type=float, default=1e-6)
parser.add_argument("--max_new_tokens", type=int, default=256)
parser.add_argument("--eval_freq", default=500, type=int)
parser.add_argument("--save_freq", default=2000, type=int)
parser.add_argument("--output_dir", type=str, default="./checkpoints/rl_output_dir")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--hub_model_id", default='rlhf.debug', type=str)
args = parser.parse_args()
set_seed(args.seed)
accelerator = Accelerator()
reward_fn = create_reward_fn(args)
config = get_model_trl_config(args)
train_prompts, val_prompts = create_datasets(args, save_test_set=False)
accelerator.wait_for_everyone()
trainer = trlx.train(
reward_fn=reward_fn,
prompts=train_prompts,
eval_prompts=val_prompts,
config=config,
)
# push to huggingface
model = trainer.accelerator.unwrap_model(trainer.model)
if accelerator.is_main_process:
model.save_pretrained(args.output_dir)