-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
93 lines (72 loc) · 3.56 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import os
import hydra
from trainer import Trainer
from omegaconf import DictConfig, OmegaConf
from torch.utils.data import DataLoader
from data.bdd100k_dataset import BDD100KDataset
from data.utils import *
from sklearn.utils.class_weight import compute_class_weight
import torch
import torch.nn as nn
from core.focal_loss import FocalLoss
import logging
logger = logging.getLogger(__name__)
@hydra.main(config_path="configs", config_name="config")
def main(cfg: DictConfig):
logger.info(f"Starting run: {cfg.run_name}")
os.chdir(hydra.utils.get_original_cwd())
logger.info(OmegaConf.to_yaml(cfg))
dataset = BDD100KDataset(base_path='./data/bdd100k',
transform=hydra.utils.instantiate(cfg.dataset.transform),
target_transform=hydra.utils.instantiate(cfg.dataset.target_transform),)
if cfg.trainer.overfit_test:
logger.info('--- OVERFIT TEST ACTIVE ---')
dataset = dataset[:12]
train_dataset, val_dataset, test_dataset = split_dataset(dataset,
train_ratio=cfg.dataset.train_ratio,
val_ratio=cfg.dataset.val_ratio,
test_ratio=cfg.dataset.test_ratio,
random_seed=cfg.seed)
train_loader = DataLoader(train_dataset, batch_size=cfg.dataset.batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=cfg.dataset.batch_size)
test_loader = DataLoader(test_dataset, batch_size=cfg.dataset.batch_size)
class_weights_file = cfg.dataset.class_weights_file
class_weights = None
if os.path.exists(class_weights_file):
logger.info(f"Loading class weights from {class_weights_file}")
class_weights = torch.load(class_weights_file, map_location=cfg.device)
else:
logger.info("Calculating class weights...")
all_masks = [sample[1] for sample in train_dataset]
flat_labels = np.concatenate([np.array(mask).flatten() for mask in all_masks])
classes = list(range(0, 5))
classes.append(255)
class_weights = torch.tensor(
compute_class_weight("balanced", classes=np.array(classes), y=flat_labels)[:-1], dtype=torch.float32, device=cfg.device
)
torch.save(class_weights, class_weights_file)
logger.info(f"Class weights saved to {class_weights_file}")
model = hydra.utils.instantiate(cfg.model)
optimizer = hydra.utils.instantiate(cfg.optimizer, params=model.parameters())
if cfg.criterion._target_ == 'torch.nn.CrossEntropyLoss':
criterion = nn.CrossEntropyLoss(ignore_index=255, weight=class_weights)
if cfg.criterion._target_ == 'core.FocalLoss':
criterion = FocalLoss(gamma=cfg.criterion.gamma, weights=class_weights, ignore_index=255)
logger.info(f'--- Model Configuration of {cfg.model._target_} ---')
logger.info(model)
trainer = Trainer(
model=model,
criterion=criterion,
optimizer=optimizer,
epochs=cfg.trainer.epochs,
seed=cfg.seed,
device=cfg.device,
verbose=cfg.verbose,
run_name=cfg.run_name,
early_stopping_patience=cfg.trainer.early_stopping_patience,
n_classes=cfg.model.num_classes
)
trainer.run(train_loader, val_loader)
trainer.test(test_loader)
if __name__ == "__main__":
main()