-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
236 lines (193 loc) · 10.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# -*- coding: utf-8 -*-
import os
import sys
import csv
import time
import json
import datetime
import pickle as pkl
import tensorflow as tf
from tensorflow.contrib import learn
from tensorflow.python.framework import graph_util
import data_helper
from rnn_classifier import rnn_clf
from cnn_classifier import cnn_clf
from clstm_classifier import clstm_clf
try:
from sklearn.model_selection import train_test_split
except ImportError as e:
error = "Please install scikit-learn."
print(str(e) + ': ' + error)
sys.exit()
# Show warnings and errors only
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# Parameters
# =============================================================================
# Model choices
tf.flags.DEFINE_string('clf', 'clstm', "Type of classifiers. Default: clstm. You have four choices: [cnn, lstm, blstm, clstm]")
# Data parameters
tf.flags.DEFINE_string('data_file', None, 'Data file path')
tf.flags.DEFINE_string('stop_word_file', None, 'Stop word file path')
tf.flags.DEFINE_integer('min_frequency', 0, 'Minimal word frequency')
tf.flags.DEFINE_integer('num_classes', 3, 'Number of classes')
tf.flags.DEFINE_integer('max_length', 0, 'Max document length')
tf.flags.DEFINE_integer('vocab_size', 0, 'Vocabulary size')
tf.flags.DEFINE_float('test_size', 0.1, 'Cross validation test size')
# Model hyperparameters
tf.flags.DEFINE_integer('embedding_size', 256, 'Word embedding size. For CNN, C-LSTM.')
tf.flags.DEFINE_string('filter_sizes', '3, 4, 5', 'CNN filter sizes. For CNN, C-LSTM.')
tf.flags.DEFINE_integer('num_filters', 128, 'Number of filters per filter size. For CNN, C-LSTM.')
tf.flags.DEFINE_integer('hidden_size', 128, 'Number of hidden units in the LSTM cell. For LSTM, Bi-LSTM')
tf.flags.DEFINE_integer('num_layers', 2, 'Number of the LSTM cells. For LSTM, Bi-LSTM, C-LSTM')
tf.flags.DEFINE_float('keep_prob', 0.5, 'Dropout keep probability') # All
tf.flags.DEFINE_float('learning_rate', 1e-3, 'Learning rate') # All
tf.flags.DEFINE_float('l2_reg_lambda', 0.001, 'L2 regularization lambda') # All
# Training parameters
tf.flags.DEFINE_integer('batch_size', 32, 'Batch size')
tf.flags.DEFINE_integer('num_epochs', 50, 'Number of epochs')
tf.flags.DEFINE_float('decay_rate', 1, 'Learning rate decay rate. Range: (0, 1]') # Learning rate decay
tf.flags.DEFINE_integer('decay_steps', 100000, 'Learning rate decay steps') # Learning rate decay
tf.flags.DEFINE_integer('evaluate_every_steps', 100, 'Evaluate the model on validation set after this many steps')
tf.flags.DEFINE_integer('save_every_steps', 1000, 'Save the model after this many steps')
tf.flags.DEFINE_integer('num_checkpoint', 10, 'Number of models to store')
FLAGS = tf.app.flags.FLAGS
def main(_):
if FLAGS.clf == 'lstm':
FLAGS.embedding_size = FLAGS.hidden_size
elif FLAGS.clf == 'clstm':
FLAGS.hidden_size = len(FLAGS.filter_sizes.split(",")) * FLAGS.num_filters
# Output files directory
timestamp = str(int(time.time()))
model_dir = os.path.join(os.path.curdir,'model')
params_dir = os.path.join(os.path.curdir,'params')
if not os.path.exists(params_dir):
os.makedirs(params_dir)
# Load and save data
# =============================================================================
data, labels, lengths, vocab_processor = data_helper.load_data(file_path=FLAGS.data_file,
sw_path=FLAGS.stop_word_file,
min_frequency=FLAGS.min_frequency,
max_length=FLAGS.max_length,
shuffle=True)
# Save vocabulary processor
vocab_processor.save(os.path.join(params_dir, 'vocab'))
FLAGS.vocab_size = len(vocab_processor.vocabulary_._mapping)
FLAGS.max_length = vocab_processor.max_document_length
params = FLAGS.flag_values_dict()
# Print parameters
model = params['clf']
if model == 'cnn':
del params['hidden_size']
del params['num_layers']
elif model == 'lstm' or model == 'blstm':
del params['num_filters']
del params['filter_sizes']
params['embedding_size'] = params['hidden_size']
elif model == 'clstm':
params['hidden_size'] = len(list(map(int, params['filter_sizes'].split(",")))) * params['num_filters']
params_dict = sorted(params.items(), key=lambda x: x[0])
print('Parameters:')
for item in params_dict:
print('{}: {}'.format(item[0], item[1]))
print('')
# Save parameters to file
params_file = open(os.path.join(params_dir,'params.pkl'), 'wb')
pkl.dump(params, params_file, True)
params_file.close()
# Simple Cross validation
x_train, x_valid, y_train, y_valid, train_lengths, valid_lengths = train_test_split(data,
labels,
lengths,
test_size=FLAGS.test_size,
random_state=22)
# Batch iterator
train_data = data_helper.batch_iter(x_train, y_train, train_lengths, FLAGS.batch_size, FLAGS.num_epochs)
# Train
# =============================================================================
with tf.Graph().as_default():
with tf.Session() as sess:
if FLAGS.clf == 'cnn':
classifier = cnn_clf(FLAGS)
elif FLAGS.clf == 'lstm' or FLAGS.clf == 'blstm':
classifier = rnn_clf(FLAGS)
elif FLAGS.clf == 'clstm':
classifier = clstm_clf(FLAGS)
else:
raise ValueError('clf should be one of [cnn, lstm, blstm, clstm]')
# Train procedure
global_step = tf.Variable(0, name='global_step', trainable=False)
# Learning rate decay
starter_learning_rate = FLAGS.learning_rate
learning_rate = tf.train.exponential_decay(starter_learning_rate,
global_step,
FLAGS.decay_steps,
FLAGS.decay_rate,
staircase=True)
optimizer = tf.train.AdamOptimizer(learning_rate)
grads_and_vars = optimizer.compute_gradients(classifier.cost)
train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step,name='op_to_store')
# Summaries
loss_summary = tf.summary.scalar('Loss', classifier.cost)
accuracy_summary = tf.summary.scalar('Accuracy', classifier.accuracy)
# Train summary
train_summary_op = tf.summary.merge_all()
train_summary_dir = os.path.join(os.path.curdir, 'summaries', 'train')
train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph)
# Validation summary
valid_summary_op = tf.summary.merge_all()
valid_summary_dir = os.path.join(os.path.curdir, 'summaries', 'valid')
valid_summary_writer = tf.summary.FileWriter(valid_summary_dir, sess.graph)
saver = tf.train.Saver(max_to_keep=FLAGS.num_checkpoint)
sess.run(tf.global_variables_initializer())
def run_step(input_data, is_training=True):
"""Run one step of the training process."""
input_x, input_y, sequence_length = input_data
fetches = {'step': global_step,
'cost': classifier.cost,
'accuracy': classifier.accuracy,
'learning_rate': learning_rate}
feed_dict = {classifier.input_x: input_x,
classifier.input_y: input_y}
if FLAGS.clf != 'cnn':
fetches['final_state'] = classifier.final_state
feed_dict[classifier.batch_size] = len(input_x)
feed_dict[classifier.sequence_length] = sequence_length
if is_training:
fetches['train_op'] = train_op
fetches['summaries'] = train_summary_op
feed_dict[classifier.keep_prob] = FLAGS.keep_prob
else:
fetches['summaries'] = valid_summary_op
feed_dict[classifier.keep_prob] = 1.0
vars = sess.run(fetches, feed_dict)
step = vars['step']
cost = vars['cost']
accuracy = vars['accuracy']
summaries = vars['summaries']
# Write summaries to file
if is_training:
train_summary_writer.add_summary(summaries, step)
else:
valid_summary_writer.add_summary(summaries, step)
time_str = datetime.datetime.now().isoformat()
print("{}: step: {}, loss: {:g}, accuracy: {:g}".format(time_str, step, cost, accuracy))
return accuracy
print('Start training ...')
for train_input in train_data:
input_x,input_y,_ =train_input
run_step(train_input, is_training=True)
current_step = tf.train.global_step(sess, global_step)
if current_step % FLAGS.evaluate_every_steps == 0:
print('\nValidation')
run_step((x_valid, y_valid, valid_lengths), is_training=False)
print('')
if current_step % FLAGS.save_every_steps == 0:
if os.path.exists(model_dir):
os.system('rm -rf '+model_dir)
tf.saved_model.simple_save(sess,
os.path.join(model_dir,timestamp),
inputs={"input_x": classifier.input_x},
outputs={"input_y": classifier.input_y})
print('\nAll the files have been saved to {}\n'.format(model_dir))
if __name__ =="__main__":
tf.app.run()