-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathutils.py
196 lines (170 loc) · 6.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import base64
import io
import dash_ag_grid as dag
import dash_bootstrap_components as dbc
import dash_mantine_components as dmc
import pandas as pd
from dash import Input, Output, State, callback, dcc, html
def chat_container(text, type_):
return html.Div(text, id="chat-item", className=type_)
def jumbotron():
return html.Div(
dbc.Container(
[
html.H2("Data insights with Dash and OpenAI", className="display-4"),
dcc.Markdown(
"This application uses [Dash Chart Editor](https://github.com/BSd3v/dash-chart-editor)"
" as an interface to explore a dataset and OpenAI's API to interact in real-time with "
"a dataset by asking questions about its contents.",
className="lead",
),
html.Hr(className="my-2"),
html.P(
"Start using the application by interacting with the sample dataset, or upload your own."
),
html.P(
[
dbc.Button(
"Learn more",
style={"background-color": "#238BE6"},
href="https://plotly.com/examples/generative-ai-chatgpt/",
),
dbc.Button(
"Upload your own CSV",
id="modal-demo-button",
style={
"background-color": "#238BE6",
"margin-left": "10px",
},
),
],
className="lead",
style={"display": "flex"},
),
],
fluid=True,
className="py-3",
),
className="p-3 bg-light rounded-3",
)
def upload_modal():
return html.Div(
[
dmc.Modal(
title="Upload Modal",
id="upload-modal",
size="lg",
zIndex=10000,
children=[
dcc.Upload(
id="upload-data",
children=html.Div(
["Drag and Drop or ", html.A("Select Files")]
),
style={
"width": "100%",
"height": "60px",
"lineHeight": "60px",
"borderWidth": "1px",
"borderStyle": "dashed",
"borderRadius": "5px",
"textAlign": "center",
"margin": "10px",
"font-family": "-apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica, Arial,"
" sans-serif, Apple Color Emoji, Segoe UI Emoji",
},
# Allow multiple files to be uploaded
multiple=False,
),
dmc.Space(h=20),
html.Div(id="summary"),
dmc.Group(
[
dmc.Button(
"Close",
color="red",
variant="outline",
id="modal-close-button",
),
],
position="right",
),
],
),
]
)
def generate_prompt(df, question):
# Generate insights
insights = []
# Basic DataFrame Information
insights.append(
f"The DataFrame contains {len(df)} rows and {len(df.columns)} columns."
)
insights.append("Here are the first 5 rows of the DataFrame:\n")
insights.append(df.head().to_string(index=False))
# Summary Statistics
insights.append("\nSummary Statistics:")
insights.append(df.describe().to_string())
# Column Information
insights.append("\nColumn Information:")
for col in df.columns:
insights.append(f"- Column '{col}' has {df[col].nunique()} unique values.")
# Missing Values
missing_values = df.isnull().sum()
insights.append("\nMissing Values:")
for col, count in missing_values.items():
if count > 0:
insights.append(f"- Column '{col}' has {count} missing values.")
# Most Common Values in Categorical Columns
categorical_columns = df.select_dtypes(include=["object"]).columns
for col in categorical_columns:
top_value = df[col].mode().iloc[0]
insights.append(f"\nMost common value in '{col}' column: {top_value}")
insights_text = "\n".join(insights)
# Compliment and Prompt
prompt = (
"You are a data analyst and chart design expert helping users build charts and answer "
"questions about arbitrary datasets. The user's question will be provided. Ensure you "
"answer the user's question accurately and given the context of the dataset. The user "
"will use the results of your commentary to work on a chart or to research the data "
"using Dash Chart Editor, a product built by Plotly. If the user's question doesn't "
" make sense, feel free to make a witty remark about Plotly and Dash. Your response "
"should use Markdown markup. Limit your response to only 1-3 sentences. Address the "
"user directly as they can see your response."
)
prompt = f"{prompt}\n\nContext:\n\n{insights_text}\n\nUser's Question: {question}"
return prompt
@callback(
Output("chart-editor", "dataSources"),
Output("summary", "children"),
Input("upload-data", "contents"),
State("upload-data", "filename"),
prevent_initial_call=True,
)
def update_output(contents, filename):
content_type, content_string = contents.split(",")
decoded = base64.b64decode(content_string)
df = pd.read_csv(io.StringIO(decoded.decode("utf-8")))
preview = html.Div(
[
html.H5(filename),
dag.AgGrid(
rowData=df.to_dict("records"),
columnDefs=[{"field": i} for i in df.columns],
defaultColDef={"sortable": True, "resizable": True, "editable": True},
),
]
)
return df.to_dict("list"), preview
@callback(
Output("upload-modal", "opened"),
Input("modal-demo-button", "n_clicks"),
Input("modal-close-button", "n_clicks"),
State("upload-modal", "opened"),
prevent_initial_call=True,
)
def modal_demo(nc1, nc2, opened):
return not opened
@callback(Output("chat-submit", "disabled"), Input("question", "value"))
def disable_submit(question):
return not bool(question)