-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCalculus.py
127 lines (98 loc) · 4.42 KB
/
Calculus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#Calculus library
#TheEnzyme
def Diff(formula):
if '\\' in formula: #applies quotient rule
formula = formula.split('\\')
#sets up strings for multplication
vu = '{0}*{1}'.format(formula[1], Diff(formula[0]))
uv = '{0}*{1}'.format(formula[0], Diff(formula[1]))
if formula[1].find('x') == -1:
return '{0}-{1}\{2}'.format(Multiply(vu), Multiply(uv), int(formula[1]) **2)
return '{0}-{1}\({2})^2'.format(Multiply(vu), Multiply(uv), formula[1])
elif ')(' in formula: #applies the product rule
formula = formula.lstrip('(').rstrip(')').split(')(')
vu = '{0}*{1}'.format(formula[1], Diff(formula[0]))
uv = '{0}*{1}'.format(formula[0], Diff(formula[1]))
print vu, uv
return '{0}+{1}'.format(Multiply(vu), Multiply(uv))
elif formula.find('(') > 0:
if Diff(formula[:formula.find('(')]) != '0':
retPower = (formula[formula.find(')^') + 2 : ])
retCoeff = '{0}*{1}'.format(Diff(formula[:formula.find('(')]), retPower)
return '{0}({1})({2})^{3}'.format(Multiply(retCoeff), Diff(bracketSlice), bracketSlice, int(retPower) - 1)
elif '+' in formula or '-' in formula: #handles more than one operand
output = list()
divider = '-'
#splits up the input by the operands of the input
if '+' in formula:
divider = '+'
formula = formula.replace(' ', '').split(divider.strip())
print formula
for i in range(len(formula)):
if Power(formula[i]) == 1:
output.append(str(Coefficient(formula[i])))
elif Coefficient(formula[i]) == 0 or Diff(formula[i]) == '0':
pass
else:
output.append(Diff(formula[i]))
print output
return divider.join(output)
elif 'x' not in formula: #handles constants
return '0'
elif formula.find('^') == -1: #for no power
return str(Coefficient(formula))
else: #handles general form
return '{0}x^{1}'.format(Coefficient(formula) * Power(formula), Power(formula) -1)
def Multiply(formula): #only can handle two strings being multiplied together.
formula = formula.replace(' ', '')
if '+' in formula or formula.find('-') > 0:
formula = formula.replace('-','+-').split('*')
output = list()
for i in range(len(formula)):
if '+' in formula[i]:
formula[i] = formula[i].split('+')
for i in range(len(formula[0])):
for x in range(len(formula[1])):
output.append(Multiply('{0}*{1}'.format(formula[0][i], formula[1][x])))
output = '+'.join(output)
if '-' in output:
return output.replace('+-', '-')
return output
else:
formula = formula.split('*')
if (Power(formula[0]) + Power(formula[1])) == 0:
return str(Coefficient(formula[0]) * Coefficient(formula[1]))
elif Coefficient(formula[0]) * Coefficient(formula[1]) == 0:
return 'x{0}'.format(Power(formula[0]) + Power(formula[1]))
return '{0}x^{1}'.format(Coefficient(formula[0]) * Coefficient(formula[1]), Power(formula[0]) + Power(formula[1]))
def Coefficient(expression):
if expression.find('x') == 0:
return 1
elif 'x' not in expression:
return int(expression)
elif expression.find('/') != -1 and expression.find('/') < expression.find('x'):
return int(expression[:expression.find('/')]) / int(expression[expression.find('/') + 1 : expression.find('x')])
return int(expression[0:expression.find('x')])
def Power(expression):
if expression.find('x^') != -1:
power = expression[expression.find('^') +1: ]
if 'x' in power:
return int(power[:power.find('x')])
else:
return int(power)
elif expression.find('x') == -1:
return 0
elif expression[0] == '^':
return expression[1:]
else:
return 1
#Broken code written at stupid times with idiot ball. Also broken
##def Simplification(formula):
## number = []
## for a in range(len(formula[0])):
## for b in range(len(formula[1])):
## if Power(formula[0][a]) == Power(formula[0][b]):
## formula[0][a] = str(Coefficient(formula[0][a]) + Coefficient(formula[1][b])) + 'x^' + str(Power(formula[0][a]))
## number.append(formula[0][a])
## print formula
## print number