-
-
Notifications
You must be signed in to change notification settings - Fork 587
/
Copy pathimage.go
764 lines (693 loc) · 24.6 KB
/
image.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
package tview
import (
"image"
"math"
"github.com/gdamore/tcell/v2"
)
// Types of dithering applied to images.
const (
DitheringNone = iota // No dithering.
DitheringFloydSteinberg // Floyd-Steinberg dithering (the default).
)
// The number of colors supported by true color terminals (R*G*B = 256*256*256).
const TrueColor = 16777216
// This map describes what each block element looks like. A 1 bit represents a
// pixel that is drawn, a 0 bit represents a pixel that is not drawn. The least
// significant bit is the top left pixel, the most significant bit is the bottom
// right pixel, moving row by row from left to right, top to bottom.
var blockElements = map[rune]uint64{
BlockLowerOneEighthBlock: 0b1111111100000000000000000000000000000000000000000000000000000000,
BlockLowerOneQuarterBlock: 0b1111111111111111000000000000000000000000000000000000000000000000,
BlockLowerThreeEighthsBlock: 0b1111111111111111111111110000000000000000000000000000000000000000,
BlockLowerHalfBlock: 0b1111111111111111111111111111111100000000000000000000000000000000,
BlockLowerFiveEighthsBlock: 0b1111111111111111111111111111111111111111000000000000000000000000,
BlockLowerThreeQuartersBlock: 0b1111111111111111111111111111111111111111111111110000000000000000,
BlockLowerSevenEighthsBlock: 0b1111111111111111111111111111111111111111111111111111111100000000,
BlockLeftSevenEighthsBlock: 0b0111111101111111011111110111111101111111011111110111111101111111,
BlockLeftThreeQuartersBlock: 0b0011111100111111001111110011111100111111001111110011111100111111,
BlockLeftFiveEighthsBlock: 0b0001111100011111000111110001111100011111000111110001111100011111,
BlockLeftHalfBlock: 0b0000111100001111000011110000111100001111000011110000111100001111,
BlockLeftThreeEighthsBlock: 0b0000011100000111000001110000011100000111000001110000011100000111,
BlockLeftOneQuarterBlock: 0b0000001100000011000000110000001100000011000000110000001100000011,
BlockLeftOneEighthBlock: 0b0000000100000001000000010000000100000001000000010000000100000001,
BlockQuadrantLowerLeft: 0b0000111100001111000011110000111100000000000000000000000000000000,
BlockQuadrantLowerRight: 0b1111000011110000111100001111000000000000000000000000000000000000,
BlockQuadrantUpperLeft: 0b0000000000000000000000000000000000001111000011110000111100001111,
BlockQuadrantUpperRight: 0b0000000000000000000000000000000011110000111100001111000011110000,
BlockQuadrantUpperLeftAndLowerRight: 0b1111000011110000111100001111000000001111000011110000111100001111,
}
// pixel represents a character on screen used to draw part of an image.
type pixel struct {
style tcell.Style
element rune // The block element.
}
// Image implements a widget that displays one image. The original image
// (specified with [Image.SetImage]) is resized according to the specified size
// (see [Image.SetSize]), using the specified number of colors (see
// [Image.SetColors]), while applying dithering if necessary (see
// [Image.SetDithering]).
//
// Images are approximated by graphical characters in the terminal. The
// resolution is therefore limited by the number and type of characters that can
// be drawn in the terminal and the colors available in the terminal. The
// quality of the final image also depends on the terminal's font and spacing
// settings, none of which are under the control of this package. Results may
// vary.
type Image struct {
*Box
// The image to be displayed. If nil, the widget will be empty.
image image.Image
// The size of the image. If a value is 0, the corresponding size is chosen
// automatically based on the other size while preserving the image's aspect
// ratio. If both are 0, the image uses as much space as possible. A
// negative value represents a percentage, e.g. -50 means 50% of the
// available space.
width, height int
// The number of colors to use. If 0, the number of colors is chosen based
// on the terminal's capabilities.
colors int
// The dithering algorithm to use, one of the constants starting with
// "ImageDithering".
dithering int
// The width of a terminal's cell divided by its height.
aspectRatio float64
// Horizontal and vertical alignment, one of the "Align" constants.
alignHorizontal, alignVertical int
// The text to be displayed before the image.
label string
// The label style.
labelStyle tcell.Style
// The screen width of the label area. A value of 0 means use the width of
// the label text.
labelWidth int
// The actual image size (in cells) when it was drawn the last time.
lastWidth, lastHeight int
// The actual image (in cells) when it was drawn the last time. The size of
// this slice is lastWidth * lastHeight, indexed by y*lastWidth + x.
pixels []pixel
// A callback function set by the Form class and called when the user leaves
// this form item.
finished func(tcell.Key)
}
// NewImage returns a new image widget with an empty image (use [Image.SetImage]
// to specify the image to be displayed). The image will use the widget's entire
// available space. The dithering algorithm is set to Floyd-Steinberg dithering.
// The terminal's cell aspect ratio defaults to 0.5.
func NewImage() *Image {
return &Image{
Box: NewBox(),
dithering: DitheringFloydSteinberg,
aspectRatio: 0.5,
alignHorizontal: AlignCenter,
alignVertical: AlignCenter,
}
}
// SetImage sets the image to be displayed. If nil, the widget will be empty.
func (i *Image) SetImage(image image.Image) *Image {
i.image = image
i.lastWidth, i.lastHeight = 0, 0
return i
}
// SetSize sets the size of the image. Positive values refer to cells in the
// terminal. Negative values refer to a percentage of the available space (e.g.
// -50 means 50%). A value of 0 means that the corresponding size is chosen
// automatically based on the other size while preserving the image's aspect
// ratio. If both are 0, the image uses as much space as possible while still
// preserving the aspect ratio.
func (i *Image) SetSize(rows, columns int) *Image {
i.width = columns
i.height = rows
return i
}
// SetColors sets the number of colors to use. This should be the number of
// colors supported by the terminal. If 0, the number of colors is chosen based
// on the TERM environment variable (which may or may not be reliable).
//
// Only the values 0, 2, 8, 256, and 16777216 ([TrueColor]) are supported. Other
// values will be rounded up to the next supported value, to a maximum of
// 16777216.
//
// The effect of using more colors than supported by the terminal is undefined.
func (i *Image) SetColors(colors int) *Image {
i.colors = colors
i.lastWidth, i.lastHeight = 0, 0
return i
}
// GetColors returns the number of colors that will be used while drawing the
// image. This is one of the values listed in [Image.SetColors], except 0 which
// will be replaced by the actual number of colors used.
func (i *Image) GetColors() int {
switch {
case i.colors == 0:
return availableColors
case i.colors <= 2:
return 2
case i.colors <= 8:
return 8
case i.colors <= 256:
return 256
}
return TrueColor
}
// SetDithering sets the dithering algorithm to use, one of the constants
// starting with "Dithering", for example [DitheringFloydSteinberg] (the
// default). Dithering is not applied when rendering in true-color.
func (i *Image) SetDithering(dithering int) *Image {
i.dithering = dithering
i.lastWidth, i.lastHeight = 0, 0
return i
}
// SetAspectRatio sets the width of a terminal's cell divided by its height.
// You may change the default of 0.5 if your terminal / font has a different
// aspect ratio. This is used to calculate the size of the image if the
// specified width or height is 0. The function will panic if the aspect ratio
// is 0 or less.
func (i *Image) SetAspectRatio(aspectRatio float64) *Image {
if aspectRatio <= 0 {
panic("aspect ratio must be greater than 0")
}
i.aspectRatio = aspectRatio
i.lastWidth, i.lastHeight = 0, 0
return i
}
// SetAlign sets the vertical and horizontal alignment of the image within the
// widget's space. The possible values are [AlignTop], [AlignCenter], and
// [AlignBottom] for vertical alignment and [AlignLeft], [AlignCenter], and
// [AlignRight] for horizontal alignment. The default is [AlignCenter] for both
// (or [AlignTop] and [AlignLeft] if the image is part of a [Form]).
func (i *Image) SetAlign(vertical, horizontal int) *Image {
i.alignHorizontal = horizontal
i.alignVertical = vertical
return i
}
// SetLabel sets the text to be displayed before the image.
func (i *Image) SetLabel(label string) *Image {
i.label = label
return i
}
// GetLabel returns the text to be displayed before the image.
func (i *Image) GetLabel() string {
return i.label
}
// SetLabelWidth sets the screen width of the label. A value of 0 will cause the
// primitive to use the width of the label string.
func (i *Image) SetLabelWidth(width int) *Image {
i.labelWidth = width
return i
}
// GetFieldWidth returns this primitive's field width. This is the image's width
// or, if the width is 0 or less, the proportional width of the image based on
// its height as returned by [Image.GetFieldHeight]. If there is no image, 0 is
// returned.
func (i *Image) GetFieldWidth() int {
if i.width <= 0 {
if i.image == nil {
return 0
}
bounds := i.image.Bounds()
height := i.GetFieldHeight()
return bounds.Dx() * height / bounds.Dy()
}
return i.width
}
// GetFieldHeight returns this primitive's field height. This is the image's
// height or 8 if the height is 0 or less.
func (i *Image) GetFieldHeight() int {
if i.height <= 0 {
return 8
}
return i.height
}
// SetDisabled sets whether or not the item is disabled / read-only.
func (i *Image) SetDisabled(disabled bool) FormItem {
return i // Images are always read-only.
}
// SetFormAttributes sets attributes shared by all form items.
func (i *Image) SetFormAttributes(labelWidth int, labelColor, bgColor, fieldTextColor, fieldBgColor tcell.Color) FormItem {
i.labelWidth = labelWidth
i.backgroundColor = bgColor
i.SetLabelStyle(tcell.StyleDefault.Foreground(labelColor).Background(bgColor))
i.lastWidth, i.lastHeight = 0, 0
return i
}
// SetLabelStyle sets the style of the label.
func (i *Image) SetLabelStyle(style tcell.Style) *Image {
i.labelStyle = style
return i
}
// GetLabelStyle returns the style of the label.
func (i *Image) GetLabelStyle() tcell.Style {
return i.labelStyle
}
// SetFinishedFunc sets a callback invoked when the user leaves this form item.
func (i *Image) SetFinishedFunc(handler func(key tcell.Key)) FormItem {
i.finished = handler
return i
}
// Focus is called when this primitive receives focus.
func (i *Image) Focus(delegate func(p Primitive)) {
// If we're part of a form, there's nothing the user can do here so we're
// finished.
if i.finished != nil {
i.finished(-1)
return
}
i.Box.Focus(delegate)
}
// render re-populates the [Image.pixels] slice based on the current settings,
// if [Image.lastWidth] and [Image.lastHeight] don't match the current image's
// size. It also sets the new image size in these two variables.
func (i *Image) render() {
// If there is no image, there are no pixels.
if i.image == nil {
i.pixels = nil
return
}
// Calculate the new (terminal-space) image size.
bounds := i.image.Bounds()
imageWidth, imageHeight := bounds.Dx(), bounds.Dy()
if i.aspectRatio != 1.0 {
imageWidth = int(float64(imageWidth) / i.aspectRatio)
}
width, height := i.width, i.height
_, _, innerWidth, innerHeight := i.GetInnerRect()
if i.labelWidth > 0 {
innerWidth -= i.labelWidth
} else {
innerWidth -= TaggedStringWidth(i.label)
}
if innerWidth <= 0 {
i.pixels = nil
return
}
if width == 0 && height == 0 {
// Use all available space.
width, height = innerWidth, innerHeight
if adjustedWidth := imageWidth * height / imageHeight; adjustedWidth < width {
width = adjustedWidth
} else {
height = imageHeight * width / imageWidth
}
} else {
// Turn percentages into absolute values.
if width < 0 {
width = innerWidth * -width / 100
}
if height < 0 {
height = innerHeight * -height / 100
}
if width == 0 {
// Adjust the width.
width = imageWidth * height / imageHeight
} else if height == 0 {
// Adjust the height.
height = imageHeight * width / imageWidth
}
}
if width <= 0 || height <= 0 {
i.pixels = nil
return
}
// If nothing has changed, we're done.
if i.lastWidth == width && i.lastHeight == height {
return
}
i.lastWidth, i.lastHeight = width, height // This could still be larger than the available space but that's ok for now.
// Generate the initial pixels by resizing the image (8x8 per cell).
pixels := i.resize()
// Turn them into block elements with background/foreground colors.
i.stamp(pixels)
}
// resize resizes the image to the current size and returns the result as a
// slice of pixels. It is assumed that [Image.lastWidth] (w) and
// [Image.lastHeight] (h) are positive, non-zero values, and the slice has a
// size of 64*w*h, with each pixel being represented by 3 float64 values in the
// range of 0-1. The factor of 64 is due to the fact that we calculate 8x8
// pixels per cell.
func (i *Image) resize() [][3]float64 {
// Because most of the time, we will be downsizing the image, we don't even
// attempt to do any fancy interpolation. For each target pixel, we
// calculate a weighted average of the source pixels using their coverage
// area.
bounds := i.image.Bounds()
srcWidth, srcHeight := bounds.Dx(), bounds.Dy()
tgtWidth, tgtHeight := i.lastWidth*8, i.lastHeight*8
coverageWidth, coverageHeight := float64(tgtWidth)/float64(srcWidth), float64(tgtHeight)/float64(srcHeight)
pixels := make([][3]float64, tgtWidth*tgtHeight)
weights := make([]float64, tgtWidth*tgtHeight)
for srcY := bounds.Min.Y; srcY < bounds.Max.Y; srcY++ {
for srcX := bounds.Min.X; srcX < bounds.Max.X; srcX++ {
r32, g32, b32, _ := i.image.At(srcX, srcY).RGBA()
r, g, b := float64(r32)/0xffff, float64(g32)/0xffff, float64(b32)/0xffff
// Iterate over all target pixels. Outer loop is Y.
startY := float64(srcY-bounds.Min.Y) * coverageHeight
endY := startY + coverageHeight
fromY, toY := int(startY), int(endY)
for tgtY := fromY; tgtY <= toY && tgtY < tgtHeight; tgtY++ {
coverageY := 1.0
if tgtY == fromY {
coverageY -= math.Mod(startY, 1.0)
}
if tgtY == toY {
coverageY -= 1.0 - math.Mod(endY, 1.0)
}
// Inner loop is X.
startX := float64(srcX-bounds.Min.X) * coverageWidth
endX := startX + coverageWidth
fromX, toX := int(startX), int(endX)
for tgtX := fromX; tgtX <= toX && tgtX < tgtWidth; tgtX++ {
coverageX := 1.0
if tgtX == fromX {
coverageX -= math.Mod(startX, 1.0)
}
if tgtX == toX {
coverageX -= 1.0 - math.Mod(endX, 1.0)
}
// Add a weighted contribution to the target pixel.
index := tgtY*tgtWidth + tgtX
coverage := coverageX * coverageY
pixels[index][0] += r * coverage
pixels[index][1] += g * coverage
pixels[index][2] += b * coverage
weights[index] += coverage
}
}
}
}
// Normalize the pixels.
for index, weight := range weights {
if weight > 0 {
pixels[index][0] /= weight
pixels[index][1] /= weight
pixels[index][2] /= weight
}
}
return pixels
}
// stamp takes the pixels generated by [Image.resize] and populates the
// [Image.pixels] slice accordingly.
func (i *Image) stamp(resized [][3]float64) {
// For each 8x8 pixel block, we find the best block element to represent it,
// given the available colors.
i.pixels = make([]pixel, i.lastWidth*i.lastHeight)
colors := i.GetColors()
for row := 0; row < i.lastHeight; row++ {
for col := 0; col < i.lastWidth; col++ {
// Calculate an error for each potential block element + color. Keep
// the one with the lowest error.
// Note that the values in "resize" may lie outside [0, 1] due to
// the error distribution during dithering.
minMSE := math.MaxFloat64 // Mean squared error.
var final [64][3]float64 // The final pixel values.
for element, bits := range blockElements {
// Calculate the average color for the pixels covered by the set
// bits and unset bits.
var (
bg, fg [3]float64
setBits float64
bit uint64 = 1
)
for y := 0; y < 8; y++ {
for x := 0; x < 8; x++ {
index := (row*8+y)*i.lastWidth*8 + (col*8 + x)
if bits&bit != 0 {
fg[0] += resized[index][0]
fg[1] += resized[index][1]
fg[2] += resized[index][2]
setBits++
} else {
bg[0] += resized[index][0]
bg[1] += resized[index][1]
bg[2] += resized[index][2]
}
bit <<= 1
}
}
for ch := 0; ch < 3; ch++ {
fg[ch] /= setBits
if fg[ch] < 0 {
fg[ch] = 0
} else if fg[ch] > 1 {
fg[ch] = 1
}
bg[ch] /= 64 - setBits
if bg[ch] < 0 {
bg[ch] = 0
}
if bg[ch] > 1 {
bg[ch] = 1
}
}
// Quantize to the nearest acceptable color.
for _, color := range []*[3]float64{&fg, &bg} {
if colors == 2 {
// Monochrome. The following weights correspond better
// to human perception than the arithmetic mean.
gray := 0.299*color[0] + 0.587*color[1] + 0.114*color[2]
if gray < 0.5 {
*color = [3]float64{0, 0, 0}
} else {
*color = [3]float64{1, 1, 1}
}
} else {
for index, ch := range color {
switch {
case colors == 8:
// Colors vary wildly for each terminal. Expect
// suboptimal results.
if ch < 0.5 {
color[index] = 0
} else {
color[index] = 1
}
case colors == 256:
color[index] = math.Round(ch*6) / 6
}
}
}
}
// Calculate the error (and the final pixel values).
var (
mse float64
values [64][3]float64
valuesIndex int
)
bit = 1
for y := 0; y < 8; y++ {
for x := 0; x < 8; x++ {
if bits&bit != 0 {
values[valuesIndex] = fg
} else {
values[valuesIndex] = bg
}
index := (row*8+y)*i.lastWidth*8 + (col*8 + x)
for ch := 0; ch < 3; ch++ {
err := resized[index][ch] - values[valuesIndex][ch]
mse += err * err
}
bit <<= 1
valuesIndex++
}
}
// Do we have a better match?
if mse < minMSE {
// Yes. Save it.
minMSE = mse
final = values
index := row*i.lastWidth + col
i.pixels[index].element = element
i.pixels[index].style = tcell.StyleDefault.
Foreground(tcell.NewRGBColor(int32(math.Min(255, fg[0]*255)), int32(math.Min(255, fg[1]*255)), int32(math.Min(255, fg[2]*255)))).
Background(tcell.NewRGBColor(int32(math.Min(255, bg[0]*255)), int32(math.Min(255, bg[1]*255)), int32(math.Min(255, bg[2]*255))))
}
}
// Check if there is a shade block which results in a smaller error.
// What's the overall average color?
var avg [3]float64
for y := 0; y < 8; y++ {
for x := 0; x < 8; x++ {
index := (row*8+y)*i.lastWidth*8 + (col*8 + x)
for ch := 0; ch < 3; ch++ {
avg[ch] += resized[index][ch] / 64
}
}
}
for ch := 0; ch < 3; ch++ {
if avg[ch] < 0 {
avg[ch] = 0
} else if avg[ch] > 1 {
avg[ch] = 1
}
}
// Quantize and choose shade element.
element := BlockFullBlock
var fg, bg tcell.Color
shades := []rune{' ', BlockLightShade, BlockMediumShade, BlockDarkShade, BlockFullBlock}
if colors == 2 {
// Monochrome.
gray := 0.299*avg[0] + 0.587*avg[1] + 0.114*avg[2] // See above for details.
shade := int(math.Round(gray * 4))
element = shades[shade]
for ch := 0; ch < 3; ch++ {
avg[ch] = float64(shade) / 4
}
bg = tcell.ColorBlack
fg = tcell.ColorWhite
} else if colors == TrueColor {
// True color.
fg = tcell.NewRGBColor(int32(math.Min(255, avg[0]*255)), int32(math.Min(255, avg[1]*255)), int32(math.Min(255, avg[2]*255)))
bg = fg
} else {
// 8 or 256 colors.
steps := 1.0
if colors == 256 {
steps = 6.0
}
var (
lo, hi, pos [3]float64
shade float64
)
for ch := 0; ch < 3; ch++ {
lo[ch] = math.Floor(avg[ch]*steps) / steps
hi[ch] = math.Ceil(avg[ch]*steps) / steps
if r := hi[ch] - lo[ch]; r > 0 {
pos[ch] = (avg[ch] - lo[ch]) / r
if math.Abs(pos[ch]-0.5) < math.Abs(shade-0.5) {
shade = pos[ch]
}
}
}
shade = math.Round(shade * 4)
element = shades[int(shade)]
shade /= 4
for ch := 0; ch < 3; ch++ { // Find the closest channel value.
best := math.Abs(avg[ch] - (lo[ch] + (hi[ch]-lo[ch])*shade)) // Start shade from lo to hi.
if value := math.Abs(avg[ch] - (hi[ch] - (hi[ch]-lo[ch])*shade)); value < best {
best = value // Swap lo and hi.
lo[ch], hi[ch] = hi[ch], lo[ch]
}
if value := math.Abs(avg[ch] - lo[ch]); value < best {
best = value // Use lo.
hi[ch] = lo[ch]
}
if value := math.Abs(avg[ch] - hi[ch]); value < best {
lo[ch] = hi[ch] // Use hi.
}
avg[ch] = lo[ch] + (hi[ch]-lo[ch])*shade // Quantize.
}
bg = tcell.NewRGBColor(int32(math.Min(255, lo[0]*255)), int32(math.Min(255, lo[1]*255)), int32(math.Min(255, lo[2]*255)))
fg = tcell.NewRGBColor(int32(math.Min(255, hi[0]*255)), int32(math.Min(255, hi[1]*255)), int32(math.Min(255, hi[2]*255)))
}
// Calculate the error (and the final pixel values).
var (
mse float64
values [64][3]float64
valuesIndex int
)
for y := 0; y < 8; y++ {
for x := 0; x < 8; x++ {
index := (row*8+y)*i.lastWidth*8 + (col*8 + x)
for ch := 0; ch < 3; ch++ {
err := resized[index][ch] - avg[ch]
mse += err * err
}
values[valuesIndex] = avg
valuesIndex++
}
}
// Is this shade element better than the block element?
if mse < minMSE {
// Yes. Save it.
final = values
index := row*i.lastWidth + col
i.pixels[index].element = element
i.pixels[index].style = tcell.StyleDefault.Foreground(fg).Background(bg)
}
// Apply dithering.
if colors < TrueColor && i.dithering == DitheringFloydSteinberg {
// The dithering mask determines how the error is distributed.
// Each element has three values: dx, dy, and weight (in 16th).
var mask = [4][3]int{
{1, 0, 7},
{-1, 1, 3},
{0, 1, 5},
{1, 1, 1},
}
// We dither the 8x8 block as a 2x2 block, transferring errors
// to its 2x2 neighbors.
for ch := 0; ch < 3; ch++ {
for y := 0; y < 2; y++ {
for x := 0; x < 2; x++ {
// What's the error for this 4x4 block?
var err float64
for dy := 0; dy < 4; dy++ {
for dx := 0; dx < 4; dx++ {
err += (final[(y*4+dy)*8+(x*4+dx)][ch] - resized[(row*8+(y*4+dy))*i.lastWidth*8+(col*8+(x*4+dx))][ch]) / 16
}
}
// Distribute it to the 2x2 neighbors.
for _, dist := range mask {
for dy := 0; dy < 4; dy++ {
for dx := 0; dx < 4; dx++ {
targetX, targetY := (x+dist[0])*4+dx, (y+dist[1])*4+dy
if targetX < 0 || col*8+targetX >= i.lastWidth*8 || targetY < 0 || row*8+targetY >= i.lastHeight*8 {
continue
}
resized[(row*8+targetY)*i.lastWidth*8+(col*8+targetX)][ch] -= err * float64(dist[2]) / 16
}
}
}
}
}
}
}
}
}
}
// Draw draws this primitive onto the screen.
func (i *Image) Draw(screen tcell.Screen) {
i.DrawForSubclass(screen, i)
// Regenerate image if necessary.
i.render()
// Draw label.
viewX, viewY, viewWidth, viewHeight := i.GetInnerRect()
_, labelBg, _ := i.labelStyle.Decompose()
if i.labelWidth > 0 {
labelWidth := i.labelWidth
if labelWidth > viewWidth {
labelWidth = viewWidth
}
printWithStyle(screen, i.label, viewX, viewY, 0, labelWidth, AlignLeft, i.labelStyle, labelBg == tcell.ColorDefault)
viewX += labelWidth
viewWidth -= labelWidth
} else {
_, _, drawnWidth := printWithStyle(screen, i.label, viewX, viewY, 0, viewWidth, AlignLeft, i.labelStyle, labelBg == tcell.ColorDefault)
viewX += drawnWidth
viewWidth -= drawnWidth
}
// Determine image placement.
x, y, width, height := viewX, viewY, i.lastWidth, i.lastHeight
if i.alignHorizontal == AlignCenter {
x += (viewWidth - width) / 2
} else if i.alignHorizontal == AlignRight {
x += viewWidth - width
}
if i.alignVertical == AlignCenter {
y += (viewHeight - height) / 2
} else if i.alignVertical == AlignBottom {
y += viewHeight - height
}
// Draw the image.
for row := 0; row < height; row++ {
if y+row < viewY || y+row >= viewY+viewHeight {
continue
}
for col := 0; col < width; col++ {
if x+col < viewX || x+col >= viewX+viewWidth {
continue
}
index := row*width + col
screen.SetContent(x+col, y+row, i.pixels[index].element, nil, i.pixels[index].style)
}
}
}