This document has instructions for running Latent Consistency Models (LCMs). inference using Intel-optimized PyTorch.
Use Case | Framework | Model Repository | Branch/Commit | Patch |
---|---|---|---|---|
Inference | Pytorch | https://github.com/huggingface/diffusers.git | v0.23.1 | diffusers.patch |
Follow link to install and build Pytorch, IPEX, TorchVison, Jemalloc and TCMalloc.
- Install Intel OpenMP
pip install packaging intel-openmp accelerate
- Set IOMP, jemalloc and tcmalloc Preload for better performance
export LD_PRELOAD="<path to the jemalloc directory>/lib/libjemalloc.so":"<path_to>/tcmalloc/lib/libtcmalloc.so":"<path_to_iomp>/lib/libiomp5.so":$LD_PRELOAD
- For distributed accuracy, you will need to install mpirun.
Download the 2017 COCO dataset using the download_dataset.sh
script.
Export the DATASET_DIR
environment variable to specify the directory where the dataset
will be downloaded. This environment variable will be used again when running quickstart scripts.
export DATASET_DIR=<directory where the dataset will be saved>
bash download_dataset.sh
-
git clone https://github.com/IntelAI/models.git
-
cd models/models_v2/pytorch/LCM/inference/cpu
-
Create virtual environment
venv
and activate it:python3 -m venv venv . ./venv/bin/activate
-
Install general model requirements
./setup.sh
-
Install the latest CPU versions of torch, torchvision and intel_extension_for_pytorch.
-
Setup required environment paramaters
Parameter | export command |
---|---|
TEST_MODE (THROUGHPUT, ACCURACY, REALTIME) | export TEST_MODE=THROUGHPUT (THROUGHPUT, ACCURACY, REALTIME) |
RUN_MODE | export RUN_MODE=ipex-jit (specify mode to run: eager, ipex-jit, compile-ipex, compile-inductor) |
DATASET_DIR | export DATASET_DIR=<path to the dataset> |
PRECISION | export PRECISION=fp32 <specify the precision to run: fp32, bf32, fp16, bf16, int8-bf16, int8-fp32> |
OUTPUT_DIR | export OUTPUT_DIR=<path to the directory where log files will be written> |
MODEL_DIR | export MODEL_DIR=$PWD (set the current path) |
DISTRIBUTED(Only for Accuracy) | export DISTRIBUTED=false (Set this to 'true' to run distributed accuracy) |
BATCH_SIZE (optional) | export BATCH_SIZE=<set a value for batch size, else it will run with default batch size> |
TORCH_INDUCTOR (optional) | export TORCH_INDUCTOR=< 0 or 1> (Compile model with PyTorch Inductor backend) |
- Run
run_model.sh
Output typically looks like this: Running benchmark ... 100%|██████████| 4/4 [00:17<00:00, 4.29s/it] time per prompt(s): 26.34 100%|██████████| 4/4 [00:17<00:00, 4.29s/it] time per prompt(s): 26.18 Latency: 26.18 s Throughput: 0.03820 samples/sec
Final results of the inference run can be found in results.yaml
file.
results:
- key : throughput
value: 0.03820
unit: samples/sec
- key: latency
value: 26.18
unit: s
- key: accuracy
value: 0.20004
unit: percentage