-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathdeploy.py
72 lines (61 loc) · 2.51 KB
/
deploy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import json
import azureml
from azureml.core.model import Model
from azureml.core import Workspace, Run
from azureml.core.image import ContainerImage, Image
from azureml.core.conda_dependencies import CondaDependencies
from azureml.core.webservice import Webservice, AciWebservice
def load_workspace():
# use this code to set up config file
#subscription_id ='<SUB ID>'
#resource_group ='<RESOURCE>'
#workspace_name = '<WORKSPACE>'
#try:
# ws = Workspace(subscription_id = subscription_id, resource_group = resource_group, workspace_name = workspace_name)
# ws.write_config()
# print('Workspace configuration succeeded. You are all set!')
# return ws
#except:
# print('Workspace not found. TOO MANY ISSUES!!!')
ws = Workspace.from_config()
return ws
def main():
# get workspace
ws = load_workspace()
model = Model.register(ws, model_name='pytorch_mnist', model_path='model.pth')
# create dep file
myenv = CondaDependencies()
myenv.add_pip_package('numpy')
myenv.add_pip_package('torch')
with open('pytorchmnist.yml','w') as f:
print('Writing out {}'.format('pytorchmnist.yml'))
f.write(myenv.serialize_to_string())
print('Done!')
# create image
image_config = ContainerImage.image_configuration(execution_script="score.py",
runtime="python",
conda_file="pytorchmnist.yml",
dependencies=['./models.py'])
image = Image.create(ws, 'pytorchmnist', [model], image_config)
image.wait_for_creation(show_output=True)
# create service
aciconfig = AciWebservice.deploy_configuration(cpu_cores=1,
memory_gb=1,
description='simple MNIST digit detection')
service = Webservice.deploy_from_image(workspace=ws,
image=image,
name='pytorchmnist-svc',
deployment_config=aciconfig)
service.wait_for_deployment(show_output=True)
def debug_deploy():
# get workspace
ws = load_workspace()
# get service
service = ws.webservices['pytorchmnist-svc']
# write log
with open('deploy.log','w') as f:
f.write(service.get_logs())
if __name__ == '__main__':
# check core SDK version number
print("Using Azure ML SDK Version: ", azureml.core.VERSION)
main()