-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSDE_probs.jl
175 lines (125 loc) · 3.28 KB
/
SDE_probs.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
using DifferentialEquations, Distributions, Random, LinearAlgebra, PosDefManifold, GpABC, StatsPlots, ProgressBars, StochasticDiffEq
n = 6
mat = cor(rand(Wishart(100, Matrix(1I, n, n) )))
u0 = zeros(size(mat))
lowertri = LowerTriangular(mat)
uppertri = - UpperTriangular(mat)
skewsymm = lowertri + uppertri
W = WienerProcess(0.0, 0.0, 0.0)
function matrix_skew_symmetric_drift(du, u, p, t) ## drift function for the SDE
du .= p.a .* t .* p.A
end
function matrix_skew_symmetric_diffusion(du, u, p, t) ## diffusion function for the SDE
du .= p.b .* t .* p.B
end
tspan = (0.0, 1.0)
pp = (A=skewsymm, B=skewsymm, a=1, b=1) ## skew symmetric matrices not necessarily the same.
prob = SDEProblem(matrix_skew_symmetric_drift, matrix_skew_symmetric_diffusion, u0, tspan, p=pp, noise=W, noise_rate_prototype=zeros(n,n)) ## setup SDE problem
sol = solve(prob, EM(), p=pp, dt=0.01)
function vector_id(m_sqr, n)
re_mat = zeros(m_sqr, n)
for i in 1:n
re_mat[i+(i-1)*n, i] = 1
end
return re_mat
end
function drift(du, u, p, t)
@show du
du = p.a * t * p.A
@show du
return ones(length(du))
end
function diff(du, u, p, t)
@show du
@show t
@show u
du = p.a .* t.* p.B
@show du
return du
end
n1 = 3
mat1 = cor(rand(Wishart(100, Matrix(1I, n1, n1) )))
z1 = zeros(n1, n1)
tspan1 = (0.0, 1.0)
u1 = vcat(mat1...)
W1 = WienerProcess(0.0, ones(1))
lowertri = LowerTriangular(mat1)
uppertri = - UpperTriangular(mat1)
skewsymm = lowertri + uppertri
pp = (A=hcat(skewsymm...), B=hcat(skewsymm...), a=1, b=1)
# Random.seed!(1)
prob2 = SDEProblem(drift, diff, u1, tspan1, pp, noise = W1)
sol = solve(prob2, EM(), dt = 0.01)
res_sol = reshape(sol.u[end], n1, n1)
Omega = exp.(res_sol)
cov_res = Omega * mat1 * Omega'
eig_r = eigvals(cov_res)
eig_s = eigvals(mat1)
eig_r./eig_s
A = zeros(2, 4)
A[1, 1] = 1
A[1, 4] = 1
A[2, 4] = 1
function f(du, u, p, t)
@show "drift"
@show du
@show size(du)
@show u
@show t
du .= 1.01u
@show du
end
function g(du, u, p, t)
@show "diff"
@show du
@show size(du)
@show u
@show t
du[1, 1] = 0.3u[1]
du[1, 4] = 0.12u[2]
du[2, 4] = 1.8u[2]
@show du
end
prob = SDEProblem(f, g, ones(2), (0.0, 1.0), noise_rate_prototype = A)
solve(prob, EM(), dt = 0.05)
n1 = 3
mat1 = cor(rand(Wishart(100, Matrix(1I, n1, n1) )))
lowertri = LowerTriangular(mat1)
uppertri = UpperTriangular(mat1)
skewsymm = lowertri - uppertri
pp = (A=hcat(skewsymm...), B=hcat(skewsymm...), a=1, b=1)
function drift(du, u, p, t)
# @show "drift"
# @show du
# @show u
# @show p
# @show t
du = p.a * t * p.A
# @show du
return ones(length(du))
end
function diff(du, u, p, t)
# @show "diff"
# @show du
# @show size(du)
# @show u
# @show p
# @show t
for i in 1:size(du)[2]
du[1:size(du)[1],i] .= p.a .* t.* p.B'
end
# @show du
return du
end
z1 = zeros(n1, n1)
tspan1 = (0.0, 1.0)
u1 = vcat(z1...)
W1 = WienerProcess(0.0, zeros(1))
prob2 = SDEProblem(drift, diff, u1, tspan1, pp, noise = W1, noise_rate_prototype = zeros(n1^2, 1))
sol = solve(prob2, EM(), dt = 0.001)
res_sol = reshape(sol.u[end], n1, n1)
Omega = exp(res_sol)
cov_res = Omega * mat1 * Omega'
eig_r = eigvals(cov_res)
eig_s = eigvals(mat1)
eig_r./eig_s