-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtestGpABC.jl
56 lines (47 loc) · 1.78 KB
/
testGpABC.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
using GpABC
using Distributions
using DifferentialEquations
using Plots
pyplot();
true_params = [2.0, 1.0, 15.0, 1.0, 1.0, 1.0, 100.0, 1.0, 1.0, 1.0] # nominal parameter values
priors = [Uniform(0.2, 5.), Uniform(0.2, 5.), Uniform(10., 20.),
Uniform(0.2, 2.), Uniform(0.2, 2.), Uniform(0.2, 2.),
Uniform(75., 125.), Uniform(0.2, 2.), Uniform(0.2, 2.),
Uniform(0.2, 2.)]
param_indices = [1, 3, 9] #indices of the parameters we want to estimate
priors = priors[param_indices]
#
# ODE solver settings
#
Tspan = (0.0, 10.0)
x0 = [3.0, 2.0, 1.0]
solver = RK4()
saveat = 0.1
GeneReg = function(params::AbstractArray{Float64,1},
Tspan::Tuple{Float64,Float64}, x0::AbstractArray{Float64,1},
solver::OrdinaryDiffEq.OrdinaryDiffEqAlgorithm, saveat::Float64)
if size(params,1) != 10
throw(ArgumentError("GeneReg needs 10 parameters, $(size(params,1)) were provided"))
end
function ODE_3GeneReg(dx, x, par, t)
dx[1] = par[1]/(1+par[7]*x[3]) - par[4]*x[1]
dx[2] = par[2]*par[8]*x[1]/(1+par[8]*x[1]) - par[5]*x[2]
dx[3] = par[3]*par[9]*x[1]*par[10]*x[2]./(1+par[9]*x[1])./(1+par[10]*x[2]) - par[6]*x[3]
end
prob = ODEProblem(ODE_3GeneReg, x0 ,Tspan, params)
Obs = solve(prob, solver, saveat=saveat)
return hcat(Obs.u...)
end
function simulator_function(var_params)
params = copy(true_params)
params[param_indices] .= var_params
GeneReg(params, Tspan, x0, solver, saveat)
end
reference_data = simulator_function(true_params[param_indices])
plot(reference_data', xlabel="t", ylabel="C(t)", linewidth=2, labels=["u1(t)" "u2(t)" "u3(t)"])
n_particles = 2000
threshold = 1.0
sim_result = SimulatedABCRejection(reference_data, simulator_function, priors, threshold, n_particles;
max_iter=convert(Int, 2e6),
write_progress=true)
plot(sim_result)