-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathphaseData.py
621 lines (536 loc) · 23.8 KB
/
phaseData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
import numpy as np
from scipy import interpolate
import matplotlib.pyplot as plt
from scipy.special import erf
from scipy.optimize import curve_fit
import sys
#*************************************************#
#-------------------------------------------------#
# This is a short script that aims to #
# automate the free energy calculations, #
# given the data. #
#-------------------------------------------------#
#*************************************************#
# find intersections between two curves---------------------------------
def findIntersections(iso1,iso2,tol=0.01):
x1 = iso1.mu.x
x2 = iso2.mu.x
y1 = iso1.mu.y
y2 = iso2.mu.y
# first, modify functions such that x1 and x2 are identical
startInd = max(min(x1),min(x2))
endInd = min(max(x1),max(x2))
xint = np.arange(startInd,endInd+tol,tol)
cubicSpline1 = interpolate.splrep(x1,y1)
cubicSpline2 = interpolate.splrep(x2,y2)
y1new = interpolate.splev(xint, cubicSpline1, der=0)
y2new = interpolate.splev(xint, cubicSpline2, der=0)
# now get intersection (stackoverflow Q 28766692)
idx = np.argwhere(np.diff(np.sign(y1new-y2new)) != 0).reshape(-1) + 0
# get corresponding densities
if iso1.eos.interpolant == None:
iso1.eos.genInterpolant('linear')
if iso2.eos.interpolant==None:
iso2.eos.genInterpolant('linear')
rho1 = iso1.eos.interpolant.getSinglePoint(xint[idx])
rho2 = iso2.eos.interpolant.getSinglePoint(xint[idx])
return xint[idx],y1new[idx],rho1,rho2
#-----------------------------------------------------------------------
# function that plots multiple chemical potentials----------------------
def plotMultipleMu(listOfIso, listOfLegendStrs = None, xaxis="Beta", yaxis="Beta*Mu"):
fig = plt.figure()
ax = fig.add_subplot(111)
for iso in listOfIso:
ax.plot(iso.mu.x,iso.mu.y)
plt.xlabel(xaxis)
plt.ylabel(yaxis)
plt.show()
#-----------------------------------------------------------------------
#-----------------------------------------------------------------------
# The data class defines data objects
# that hold information about a phase.
#-----------------------------------------------------------------------
class data():
def __init__(self,x,y):
# x & y are np.arrays that hold the data
self.x = x
self.y = y
# define the range of data. Min to max by default
self.startData = np.min(self.x)
self.endData = np.max(self.x)
# find indices of the values closest to the start and end values
self.findNearest()
# no interpolant object by default
self.interpolant = None
# method to change the data range (min to max by def)
def setRange(self,a,b):
self.startData = a
self.endData = b
# make sure interval is contained within the dataset
if self.startData < self.x[0]:
self.startData = self.x[0]
if self.endData > self.x[-1]:
self.endData = self.x[-1]
# get indices of the start and end values
self.findNearest()
# method to plot the data using matplotlib
def plot(self, displayFit=1, labelx='', labely='', noShow=0):
# create figure
fig = plt.figure()
ax = fig.add_subplot(111)
# scatter always plots all data, regardless of interval
# this helps validate the interval chosen visually
ax.scatter(self.x, self.y)
# label axes
ax.set_xlabel(labelx)
ax.set_ylabel(labely)
# plot the interpolant if it exists
if self.interpolant != None:
ax.plot(self.interpolant.xint, self.interpolant.yint, 'r-')
else:
if displayFit==1:
print("WARNING: interpolant does not exist")
# show the plot
plt.show()
# method to interpolate data
# 3rd degree polynomial by default
def genInterpolant(self, method='poly', degree=3):
self.interpolant = interpolant(self, method, degree)
# find indices for the values closest to start and end values
def findNearest(self):
self.startIdx = (np.abs(self.x - self.startData)).argmin()
self.endIdx = (np.abs(self.x - self.endData)).argmin()
#-----------------------------------------------------------------------
#-----------------------------------------------------------------------
# The data class defines interpolant objects
# that hold information about a phase.
#-----------------------------------------------------------------------
class interpolant():
def __init__(self, data, method, degree, tol=0.001):
# method = poly and method = linear are acceptable
# if method = linear, degree is ignored
self.method = method
self.popt = None
# define x interval for interpolation
self.xint = np.arange(data.startData, data.endData + tol, tol)
# make sure xint is within the data range
if self.xint[-1] > data.x[-1]:
self.xint[-1] = data.x[-1]
#self.xint = np.delete(self.xint,-1)
# set degree of polynomial fit
self.degree = int(degree)
# polynomial fit object
self.p = None
# linear interpolation object
self.linearInterpolation = None
# starting and ending indices for fit
s = data.startIdx
e = data.endIdx+1
# if poly fit is required
if method == 'poly':
self.p = np.polyfit(data.x[s:e], data.y[s:e], self.degree)
self.yint = np.zeros(len(self.xint))
for i in range(self.degree+1):
self.yint += self.p[self.degree-i]*self.xint**i
# or if linear interpolation is required
elif method == 'linear':
self.linearInterpolation = interpolate.interp1d(data.x, data.y, 'linear')
self.yint = self.linearInterpolation(self.xint)
elif method == 'inverse':
def inv(x,a,b):
return a/x+b
self.popt, pcov = curve_fit(inv, data.x[s:e], data.y[s:e])
self.yint = inv(self.xint, *self.popt)
# method that interpolates a single point in the dataset
def getSinglePoint(self, xQuery):
# check is the fit is polynomial
isPoly = 1
# determine if a polynomial fit is expected
try:
isPoly = 0 if self.p == None else 1
except:
isPoly = 0 if None in self.p else 1
# extract value
if isPoly == 1:
yQuery = 0.
for i in range(self.degree+1):
yQuery += self.p[self.degree-i]*xQuery**i
if np.size(xQuery)>1:
return xQuery, yQuery
else:
return yQuery
elif self.linearInterpolation != None:
if np.size(xQuery) > 1:
largerThanOne = 1
else:
largerThanOne = 0
if largerThanOne == 1:
while xQuery[-1] > self.xint[-1]:
xQuery = np.delete(xQuery,-1)
while xQuery[0] < self.xint[0]:
xQuery = np.delete(xQuery,0)
else:
if xQuery > self.xint[-1] or xQuery < self.xint[0]:
sys.exit("query point is outside of the region linearly interpolated")
if largerThanOne == 1:
return xQuery, self.linearInterpolation(xQuery)
else:
return self.linearInterpolation(xQuery)
elif self.method == "inverse":
def inv(x,a,b):
return a/x+b
yQuery = inv(xQuery, *self.popt)
return xQuery, yQuery
else:
print("WARNING: no interpolant exists")
return None
# calculate a single integral
def integrateSingle(self, a, b, tol=0.001):
if a > b:
a, b = b, a
xint = np.arange(a,b+tol,tol)
if np.size(xint) > 1:
xintNew, yint = self.getSinglePoint(xint)
else:
yint = self.getSinglePoint(xint)
xintNew = xint
return np.trapz(yint,xintNew)
# calculate the integral as a function
def integralFunction(self, start, end, ref, tol=0.001):
s = min(start, end)
e = max(start, end)
xint = np.arange(s,e+tol,tol)
yint = np.zeros(xint.size)
for i, val in enumerate(xint):
sign = -1 if ref > val else 1
yint[i] = sign * self.integrateSingle(ref, val)
return xint, yint
#-----------------------------------------------------------------------
#-----------------------------------------------------------------------
# The phase class defines objects that
# hold phase information.
#-----------------------------------------------------------------------
class phase():
def __init__(self, fname, N, skipHeader=1):
# read data from file
self.rawData = np.genfromtxt(fname,skip_header=skipHeader)
# set number of particles
self.N = N
# initialize the chemical potential object
self.mu = None
#-----------------------------------------------------------------------
#-----------------------------------------------------------------------
# The ideal class defines the phase information for
# integration from the ideal gas. (See eq. 10 in the chapter)
#-----------------------------------------------------------------------
class ideal(phase):
def __init__(self, fname, N, beta, targetP, interp='poly',skipHeader=1):
# read from file
phase.__init__(self,fname,N,skipHeader)
# set parameters
self.beta = beta
self.targetP = targetP
# create data object for the equation of state (rho(P))
self.eos = data(self.rawData[:,0], self.rawData[:,1])
# generate interpolant (fits a 3rd order polynomial)
self.eos.genInterpolant(interp,3)
# set target density to be integrated to
self.targetRho = self.eos.interpolant.getSinglePoint(self.targetP)
# initialize the integrand object
self.integrand = None
self.B2 = None
# organize the data
self.rho = self.eos.y
self.P = self.eos.x
# get eos as pressure as a function of rho
self.eosInv = data(self.rawData[:,1], self.rawData[:,0])
self.eosInv.genInterpolant(interp,3)
# plot equation of state
def plotEos(self):
self.eos.plot()
# plot the integrand
def plotIntegrand(self):
self.integrand.plot()
# calculate the integrand
def calcIntegrand(self):
integrand = self.beta*self.P/(self.rho**2) - 1./self.rho
self.integrand = data(np.append(0, self.eos.y), np.append(self.B2, integrand))
# calculate the chemical potential at a specific point (eq. 10)
def calcMu(self):
self.intVal = self.integrand.interpolant.integrateSingle(0.,self.targetRho)
self.A = self.intVal + np.log(self.targetRho) - 1. + 1./self.N*np.log(2*np.pi*self.N)
# beta*mu = beta*A/N + beta*P/rho
self.mu = self.A + self.beta * self.targetP/self.targetRho
# calculate the chemical potential as a function of P
def calcMuFunction(self):
rho, integral = self.integrand.interpolant.integralFunction(0.05,self.integrand.endData,0.)
rhonew, P = self.eosInv.interpolant.getSinglePoint(rho)
self.A = integral + np.log(self.targetRho) - 1. + 1./self.N*np.log(2*np.pi*self.N)
domain = np.in1d(rho,rhonew)
mufunc = self.A[domain] + self.beta * P/rhonew
self.mu = data(P, mufunc)
# plot the chemical potential
def muPlot(self):
if isinstance(self.mu,data):
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(self.mu.x,self.mu.y)
plt.show()
else:
print("mu function not calculated")
#-----------------------------------------------------------------------
#-----------------------------------------------------------------------
# The isobar class defines the phase information for
# integration along an isobar. (See eq. 12 in the chapter)
#-----------------------------------------------------------------------
class isobar(phase):
def __init__(self, fname, N, P, betaRef, refMu, skipHeader=1):
# inherit from the phase class (which reads the data)
phase.__init__(self,fname,N,skipHeader)
# set parameters
self.P = P
self.betaRef = betaRef
self.refMu = refMu
self.N = N
# equation of state
self.eos = data(self.rawData[:,0],self.rawData[:,1])
# energy per particle
self.enp = data(self.rawData[:,0],self.rawData[:,2])
self.beta = self.eos.x
self.rho = self.eos.y
self.enpInfo = self.enp.y
self.mu = None
# temperature-dependence
self.tD = None
self.params = None
self.tDcontribution = None
# set temperature-dependence info
def tempDependence(self, type, betas=[], params=[]):
# if the type is tanh, calculate the necessary params
if type == "tanh":
self.tD = "tanh"
assert(len(betas)==4)
assert(len(params)==2)
betas.sort()
idx1 = int(np.argmin(np.abs(self.beta-betas[0])))
idx2 = int(np.argmin(np.abs(self.beta-betas[1])))
idx3 = int(np.argmin(np.abs(self.beta-betas[2])))
idx4 = int(np.argmin(np.abs(self.beta-betas[3])))
v1 = np.mean(self.enp.y[idx1:idx2+1])
v2 = np.mean(self.enp.y[idx3:idx4+1])
print(v1,v2)
a = (v2-v1)/2
self.params = [params[0], params[1], a]
elif type == "WG2008":
self.tD = "WG2008"
assert(len(betas)==0)
assert(len(params)==1)
self.params = params
elif type == "S2005":
self.tD = "S2005"
assert(len(betas)==0)
assert(len(params)==1)
self.params = params
# calculate enthalpy (U/N + P/rho)
def calcEnthalpy(self):
ent = self.enpInfo + self.P / self.rho
self.enthalpy = data(self.beta, ent)
# calculate chemical potential (eq. 12)
def calcMu(self,start=None):
if start == None:
start = self.betaRef
betaF, muF = self.enthalpy.interpolant.integralFunction(start,self.enthalpy.endData,self.betaRef)
# THE FOLLOWING CASES ARE NOT YET ADAPTED TO THE FLUID
if self.tD == "tanh":
tDcontribution = self.params[2]/(self.params[1]*betaF) * 1./np.cosh((1/betaF-self.params[0])/self.params[1])**2
self.tDcontribution = data(betaF, tDcontribution)
self.tDcontribution.genInterpolant(method='linear')
bf, tdf = self.tDcontribution.interpolant.integralFunction(start,self.enthalpy.endData,self.betaRef)
muF += tdf
elif self.tD == "WG2008":
# check if sw is close to u/2
idx = (np.abs(self.enp.x-self.betaRef)).argmin()
if np.abs(self.enp.y[idx] - self.params[0]*2) < 2:
print("sw is very close to u/2")
# get data range
idxS = (np.abs(self.enp.x-self.enthalpy.startData)).argmin()
idxE = (np.abs(self.enp.y-self.enthalpy.endData)).argmin()
# first fit u0 and sw
def func(x,u0,sw):
return -1*u0 - 2*sw + 2*sw/x
popt, pcov = curve_fit(func, self.enp.x[idxS:idxE], self.enp.y[idxS:idxE])
u0 = popt[0]
sw = popt[1]
print(u0,sw)
# calculate integral of (p/rho + u0 -2*sw)
ent = -1*u0-2*sw + self.P / self.rho
self.enthalpy2 = data(self.beta, ent)
self.enthalpy2.genInterpolant(method='linear')
betaF, muF = self.enthalpy2.interpolant.integralFunction(start,self.enthalpy.endData, self.betaRef)
else:
print("sw is fine, proceeding normally")
tDcontribution = self.params[0]*(-2)/betaF
self.tDcontribution = data(betaF, tDcontribution)
self.tDcontribution.genInterpolant(method='linear')
bf, tdf = self.tDcontribution.interpolant.integralFunction(start,self.enthalpy.endData,self.betaRef)
muF += tdf
elif self.tD == "S2005":
nw = self.params[0]
Eos = -2
Eob = -1
Edb = 1
Eds = 1.8
qos = 1
qob = 10
qdb = 40
qds = 49
deltaEs = Eds - Eos
deltaEb = Edb - Eob
def Es(x):
return (Eos+Eds*np.exp(-x*(Eds-Eos)))/(1+np.exp(-x*(Eds-Eos)))
def Eb(x):
return (Eob + Edb*np.exp(-x*(Edb-Eob)))/(1+ np.exp(-x*(Edb-Eob)))
def ew(x):
return Es(x) - Eb(x)
def Ss(x):
return np.log((qos+qds*np.exp(-x*(Eds-Eos)))/(1+np.exp(-x*(Eds-Eos))))
def Sb(x):
return np.log((qob+qdb*np.exp(-x*(Edb-Eob)))/(1+np.exp(-x*(Edb-Eob))))
def sw(x):
return Ss(x) - Sb(x)
def deps(x):
return 2*ew(x) - 2/x*sw(x)
def dSs(x):
return deltaEs*np.exp(-x*deltaEs)*((1)/(1+np.exp(-x*deltaEs))-(qds)/(qos+qds*np.exp(-x*deltaEs)))
def dSb(x):
return deltaEb*np.exp(-x*deltaEb)*((1)/(1+np.exp(-x*deltaEb))-(qdb)/(qob+qdb*np.exp(-x*deltaEb)))
def dEs(x):
return (deltaEs*np.exp(-x*deltaEs))/(1+np.exp(-x*deltaEs))*(-Eds + (Eos+Eds*np.exp(-x*deltaEs))/(1+np.exp(-x*deltaEs)))
def dEb(x):
return (deltaEb*np.exp(-x*deltaEb))/(1+np.exp(-x*deltaEb))*(-Edb + (Eob+Edb*np.exp(-x*deltaEb))/(1+np.exp(-x*deltaEb)))
def dereps(x):
return 2*(dEs(x)-dEb(x)) + 2/x**2 * (sw(x)) - 2/x * (dSs(x) - dSb(x))
tDcontribution = -1*nw*betaF * dereps(betaF)
self.tDcontribution = data(betaF, tDcontribution)
self.tDcontribution.genInterpolant(method='linear')
bf, tdf = self.tDcontribution.interpolant.integralFunction(start,self.enthalpy.endData,self.betaRef)
muF += tdf
self.mu = data(betaF, muF + self.refMu )
# plot chemical potential
def muPlot(self):
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(self.mu.x,self.mu.y)
plt.show()
#-----------------------------------------------------------------------
#-----------------------------------------------------------------------
# The ideal class defines the phase information for
# integration along an isotherm. (See eq. 9 in the chapter)
#-----------------------------------------------------------------------
class isotherm(phase):
def __init__(self, fname, N, rhoRef, beta, refMu, skipHeader=1):
# initialize phase object
phase.__init__(self,fname,N,skipHeader)
# set parameters
self.rhoRef = rhoRef
self.beta = beta
self.refMu = refMu
# setup equations of state from the input data
self.eos = data(self.rawData[:,0],self.rawData[:,1])
self.eosInv = data(self.rawData[:,1], self.rawData[:,0])
self.mu = None
# calculate the reference pressure, given the reference rho, using eos
def calcRefP(self,interp="poly",degree=3):
self.eosInv.genInterpolant(interp,degree)
self.Pref = self.eosInv.interpolant.getSinglePoint(self.rhoRef)
# calculate the integrand of eq. 9
def calcIntegrand(self):
integrand = self.beta*self.eos.x / (self.eos.y**2)
self.integrand = data(self.eos.y,integrand)
# calculate chemical potential
def calcMu(self,start=None):
if start == None:
start = self.Pref
rho, mu = self.integrand.interpolant.integralFunction(self.rhoRef,self.integrand.endData,self.rhoRef)
rhonew, P = self.eosInv.interpolant.getSinglePoint(rho)
domain = np.in1d(rho,rhonew)
self.mu = data(P, mu[domain] + self.refMu)
# plot chemical potential
def muPlot(self):
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(self.mu.x,self.mu.y)
plt.show()
#-----------------------------------------------------------------------
#-----------------------------------------------------------------------
# The ideal class defines the phase information for
# integration from an Einstein crystal. (See eq. 24 in the chapter)
#-----------------------------------------------------------------------
class einsteinCrystal(phase):
def __init__(self, fname, gqname, N, rho, targetP, U0, beta, eta, lambdamax, AeoComp,skipHeader=1):
# create phase object and read Einstein crystal data
phase.__init__(self,fname,N,skipHeader)
# set parameters
self.rho = rho
self.U0 = U0
self.AeoComp = AeoComp
self.eta = eta
self.lambdamax = lambdamax
self.beta = beta
self.targetP = targetP
if gqname !="":
# read Gaussian Quadrature parameters
gq = np.genfromtxt(gqname,skip_header=skipHeader)
self.gq = gq[:,1]
self.linInterp=0
else:
self.linInterp=1
self.lambdamin = np.amin(self.rawData[:,0])
# organize data
self.sq_disp = data(self.rawData[:,0], self.rawData[:,1])
self.or_disp = data(self.rawData[:,0], self.rawData[:,2])
# check plateau of the integrand of eq. 19
# (using eq. 22 and the equation in the appendix of ref. 10)
def sqDispCheck(self):
beta = self.beta
lambdamax = self.lambdamax
N = self.N
n = 1.
a = 1.
sigma=1.
# translational component from Frenkel and Ladd, 1984
sq_disp_Eins_lambda = 1/beta * 3/2 * (N-1)/N * 1/lambdamax
Pnn_overlap = (erf((beta*lambdamax/2)**0.5*(sigma+a))+erf((beta*lambdamax/2)**0.5 *(sigma-a)))/2 - (np.exp(-beta*lambdamax*(sigma-a)**2/2)-np.exp(-beta*lambdamax*(sigma+a)**2/2))/((2*np.pi*beta*lambdamax)**0.5*a)
sq_disp_lambda = sq_disp_Eins_lambda - beta * n/2. * 1./(2*a*(2*np.pi*beta*lambdamax)**0.5*(1-Pnn_overlap))*((sigma*a-sigma**2-1/(beta*lambdamax))*np.exp(-beta*lambdamax*(a-sigma)**2/2)+(sigma*a+sigma**2-1/(beta*lambdamax))*np.exp(-beta*lambdamax*(a+sigma)**2/2));
sq=sq_disp_lambda * N * lambdamax
# orientational component
orc=3*N/(2*beta)
self.plateau = sq + orc
# calculate integrand of A2 (eq. 19)
def calcIntegrand(self):
integrand = self.sq_disp.x * (self.sq_disp.y + self.eta * self.or_disp.y)
loglambda = np.log(self.sq_disp.x)
self.integrand = data(loglambda,integrand)
# plot integrand
def integrandPlot(self):
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(self.integrand.x, self.integrand.y)
ax.plot([self.integrand.startData, self.integrand.endData],[self.plateau,self.plateau],'r-')
plt.show()
# calculate the chemical potential
def calcMu(self):
if self.linInterp == 0:
intGQ = np.sum(self.gq * self.integrand.y)
else:
# calculate integral with linear interpolation and the trapezoid rule
self.integrand.genInterpolant('linear')
intGQ = self.integrand.interpolant.integrateSingle(np.log(self.lambdamin),np.log(self.lambdamax))
self.A2 = -self.beta/self.N * intGQ
self.A1 = self.U0*self.beta/self.N
self.A3 = 1./self.N * np.log(self.rho)
self.Aet = -3./2 * (self.N-1)/self.N * np.log(np.pi/(self.beta*self.lambdamax)) - 3./(2*self.N) * np.log(self.N)
self.Aeo = 3./2*np.log(self.beta*self.lambdamax*self.eta)+self.AeoComp
self.A = self.A1 + self.A2 + self.A3 + self.Aet + self.Aeo
self.mu = self.A + self.beta * self.targetP / self.rho
#-----------------------------------------------------------------------