-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsource.tex
10 lines (10 loc) · 907 Bytes
/
source.tex
1
2
3
4
5
6
7
8
9
10
\iint \sqrt{1 + f^2(x,t,t)}\,\mathrm{d}x\mathrm{d}y\mathrm{d}t = \sum \xi(t)
\Vert f \Vert_2 = \sqrt{\int f^2(x)\,\mathrm{d}x}
\left.x^{x^{x^x_x}_{x^x_x}}_{x^{x^x_x}_{x^x_x}}\right\} \mathrm{wat?}
\hat A\grave A\bar A\tilde A\hat x \grave x\bar x\tilde x\hat y\grave y\bar y\tilde y
\mathop{\overbrace{1+2+3+\unicodecdots+n}}\limits^{\mathrm{Arithmatic}} = \frac{n(n+1)}{2}
\sigma = \left(\int f^2(x)\,\mathrm{d}x\right)^{1/2}
\left\vert\sum_k a_k b_k\right\vert \leq \left(\sum_k a_k^2\right)^{\frac12}\left(\sum_k b_k^2\right)^{\frac12}
f^{(n)}(z) = \frac{n!}{2\pi i} \oint \frac{f(\xi)}{(\xi - z)^{n+1}}\,\mathrm{d}\xi
\frac{1}{\left(\sqrt{\phi\sqrt5} - \phi\right) e^{\frac{2}{5}\pi}} = 1 + \frac{e^{-2\pi}}{1 + \frac{e^{-4\pi}}{1 + \frac{e^{-6\pi}}{1 + \frac{e^{-8\pi}}{1 + \unicodecdots}}}}
\mathop{\mathrm{lim\,sup}}\limits_{x\rightarrow\infty}\ \mathop{\mathrm{sin}}(x)\mathrel{\mathop{=}\limits^?}1