-
Notifications
You must be signed in to change notification settings - Fork 134
/
Copy pathtest.py
58 lines (47 loc) · 1.92 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
"""
@author: Viet Nguyen <nhviet1009@gmail.com>
"""
import argparse
import torch
from src.deep_q_network import DeepQNetwork
from src.flappy_bird import FlappyBird
from src.utils import pre_processing
def get_args():
parser = argparse.ArgumentParser(
"""Implementation of Deep Q Network to play Flappy Bird""")
parser.add_argument("--image_size", type=int, default=84, help="The common width and height for all images")
parser.add_argument("--saved_path", type=str, default="trained_models")
args = parser.parse_args()
return args
def test(opt):
if torch.cuda.is_available():
torch.cuda.manual_seed(123)
else:
torch.manual_seed(123)
if torch.cuda.is_available():
model = torch.load("{}/flappy_bird".format(opt.saved_path))
else:
model = torch.load("{}/flappy_bird".format(opt.saved_path), map_location=lambda storage, loc: storage)
model.eval()
game_state = FlappyBird()
image, reward, terminal = game_state.next_frame(0)
image = pre_processing(image[:game_state.screen_width, :int(game_state.base_y)], opt.image_size, opt.image_size)
image = torch.from_numpy(image)
if torch.cuda.is_available():
model.cuda()
image = image.cuda()
state = torch.cat(tuple(image for _ in range(4)))[None, :, :, :]
while True:
prediction = model(state)[0]
action = torch.argmax(prediction)[0]
next_image, reward, terminal = game_state.next_frame(action)
next_image = pre_processing(next_image[:game_state.screen_width, :int(game_state.base_y)], opt.image_size,
opt.image_size)
next_image = torch.from_numpy(next_image)
if torch.cuda.is_available():
next_image = next_image.cuda()
next_state = torch.cat((state[0, 1:, :, :], next_image))[None, :, :, :]
state = next_state
if __name__ == "__main__":
opt = get_args()
test(opt)