-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_multi.py
177 lines (155 loc) · 6.23 KB
/
train_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import logging
import hydra
import torch
from hydra.core.hydra_config import HydraConfig
from hydra.utils import instantiate
from omegaconf import DictConfig, OmegaConf
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import LearningRateMonitor
from torch.utils.data import DataLoader
from src.models.utils import AlphaRise, FilteringMlFlowLogger, set_seed
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
torch.set_default_dtype(torch.double)
@hydra.main(config_name=f"config.yaml", config_path="./config/", version_base="1.3.2")
def main(args: DictConfig):
"""
Training / evaluation script for CT (Causal Transformer)
Args:
args: arguments of run as DictConfig
Returns: dict with results (one and nultiple-step-ahead RMSEs)
"""
results = {}
# Non-strict access to fields
OmegaConf.set_struct(args, False)
OmegaConf.register_new_resolver("sum", lambda x, y: x + y, replace=True)
logger.info("\n" + OmegaConf.to_yaml(args, resolve=True))
# Initialisation of data
set_seed(args.exp.seed)
dataset_collection = instantiate(args.dataset, _recursive_=True)
dataset_collection.process_data_multi()
args.model.dim_outcomes = dataset_collection.train_f.data["outputs"].shape[-1]
args.model.dim_treatments = dataset_collection.train_f.data[
"current_treatments"
].shape[-1]
args.model.dim_vitals = (
dataset_collection.train_f.data["vitals"].shape[-1]
if dataset_collection.has_vitals
else 0
)
args.model.dim_static_features = dataset_collection.train_f.data[
"static_features"
].shape[-1]
# Train_callbacks
multimodel_callbacks = [AlphaRise(rate=args.exp.alpha_rate)]
# MlFlow Logger
if args.exp.logging:
experiment_name = f"{args.model.name}/{args.dataset.name}"
mlf_logger = FilteringMlFlowLogger(
filter_submodels=[],
experiment_name=experiment_name,
tracking_uri=args.exp.mlflow_uri,
)
multimodel_callbacks += [LearningRateMonitor(logging_interval="epoch")]
artifacts_path = hydra.utils.to_absolute_path(
mlf_logger.experiment.get_run(mlf_logger.run_id).info.artifact_uri
)
else:
mlf_logger = None
artifacts_path = None
# ============================== Initialisation & Training of multimodel ==============================
multimodel = instantiate(
args.model.multi, args, dataset_collection, _recursive_=False
)
if args.model.multi.tune_hparams:
multimodel.finetune(resources_per_trial=args.model.multi.resources_per_trial)
multimodel_trainer = Trainer(
gpus=eval(str(args.exp.gpus)),
logger=mlf_logger,
max_epochs=args.exp.max_epochs,
callbacks=multimodel_callbacks, # terminate_on_nan=True,
gradient_clip_val=args.model.multi.max_grad_norm,
default_root_dir=HydraConfig.get().runtime.output_dir,
deterministic=True,
)
# multimodel_trainer.save_checkpoint("CT.ckpt")
multimodel_trainer.fit(multimodel)
# Validation factual rmse
val_dataloader = DataLoader(
dataset_collection.val_f, batch_size=args.dataset.val_batch_size, shuffle=False
)
multimodel_trainer.test(multimodel, val_dataloader)
# multimodel.visualize(dataset_collection.val_f, index=0, artifacts_path=artifacts_path)
val_rmse_orig, val_rmse_all = multimodel.get_normalised_masked_rmse(
dataset_collection.val_f
)
logger.info(
f"Val normalised RMSE (all): {val_rmse_all}; Val normalised RMSE (orig): {val_rmse_orig}"
)
encoder_results = {}
if hasattr(
dataset_collection, "test_cf_one_step"
): # Test one_step_counterfactual rmse
(
test_rmse_orig,
test_rmse_all,
test_rmse_last,
) = multimodel.get_normalised_masked_rmse(
dataset_collection.test_cf_one_step, one_step_counterfactual=True
)
logger.info(
f"Test normalised RMSE (all): {test_rmse_all}; "
f"Test normalised RMSE (orig): {test_rmse_orig}; "
f"Test normalised RMSE (only counterfactual): {test_rmse_last}"
)
encoder_results = {
"encoder_val_rmse_all": val_rmse_all,
"encoder_val_rmse_orig": val_rmse_orig,
"encoder_test_rmse_all": test_rmse_all,
"encoder_test_rmse_orig": test_rmse_orig,
"encoder_test_rmse_last": test_rmse_last,
}
elif hasattr(dataset_collection, "test_f"): # Test factual rmse
test_rmse_orig, test_rmse_all = multimodel.get_normalised_masked_rmse(
dataset_collection.test_f
)
logger.info(
f"Test normalised RMSE (all): {test_rmse_all}; "
f"Test normalised RMSE (orig): {test_rmse_orig}."
)
encoder_results = {
"encoder_val_rmse_all": val_rmse_all,
"encoder_val_rmse_orig": val_rmse_orig,
"encoder_test_rmse_all": test_rmse_all,
"encoder_test_rmse_orig": test_rmse_orig,
}
mlf_logger.log_metrics(encoder_results) if args.exp.logging else None
results.update(encoder_results)
test_rmses = {}
if hasattr(
dataset_collection, "test_cf_treatment_seq"
): # Test n_step_counterfactual rmse
test_rmses = multimodel.get_normalised_n_step_rmses(
dataset_collection.test_cf_treatment_seq
)
elif hasattr(dataset_collection, "test_f_multi"): # Test n_step_factual rmse
test_rmses = multimodel.get_normalised_n_step_rmses(
dataset_collection.test_f_multi
)
test_rmses = {f"{k+2}-step": v for (k, v) in enumerate(test_rmses)}
logger.info(f"Test normalised RMSE (n-step prediction): {test_rmses}")
decoder_results = {
"decoder_val_rmse_all": val_rmse_all,
"decoder_val_rmse_orig": val_rmse_orig,
}
decoder_results.update(
{("decoder_test_rmse_" + k): v for (k, v) in test_rmses.items()}
)
mlf_logger.log_metrics(decoder_results) if args.exp.logging else None
results.update(decoder_results)
mlf_logger.experiment.set_terminated(
mlf_logger.run_id
) if args.exp.logging else None
return results
if __name__ == "__main__":
main()