-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathutils.py
executable file
·246 lines (223 loc) · 9.58 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import pandas as pd
import numpy as np
import os
from configs import general_config
from data_helpers.utils import readNewFile,loadDict
import logging
import tensorflow as tf
def get_num_params():
# for v in tf.trainable_variables():
# print(v.name)
# print(np.prod(v.get_shape().as_list()))
return np.sum([np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()
if "embedding_matrix" not in v.name.split(":")[0].split("/")
and "embedding_matrix_" not in v.name.split(":")[0].split("/")])
class PaddedDataIterator(object):
def __init__(self, loadPath,vocab2intPath,sent_len_cut=None):
indices, sentences, labels = readNewFile(file=loadPath, vocab2intPath=vocab2intPath)
num_words = [len(sentence) for sentence in sentences]
if isinstance(sent_len_cut, int):
num_words_=[min(len(sentence),sent_len_cut) for sentence in sentences]
else:
num_words_=num_words[:]
self.df = pd.DataFrame({"id": indices, "sentence": sentences, "label": labels,
"sentence_length": num_words,"sentence_length_":num_words_})
self.total_size=len(self.df)
self.cursor=0
self.loop=0
self.max_len=general_config.max_seq_len
self.shuffle()
def shuffle(self):
self.df=self.df.sample(frac=1).reset_index(drop=True)
self.cursor=0
def next(self,batch_size,need_all=False):
if need_all: # 完整遍历所有数据一轮,常test时用。
if self.cursor>=self.total_size:
self.shuffle()
self.loop+=1
else:
batch_size = min(batch_size, self.total_size - self.cursor)
else:
if self.cursor+batch_size>self.total_size:
self.shuffle()
self.loop += 1
res=self.df.ix[self.cursor:self.cursor+batch_size-1,:]
self.cursor+=batch_size
res_=np.zeros(shape=[batch_size,self.max_len],dtype=np.int32)
for idx,res_r in enumerate(res_):
# 少的pad,多的cut。
tmp_len=min(self.max_len,res["sentence_length"].values[idx])
res_r[:tmp_len]=res["sentence"].values[idx][:tmp_len]
return res["id"].values,res_,res["label"].values,res["sentence_length_"].values
class BucketedDataIterator(object):
def __init__(self, loadPath,vocab2intPath,num_buckets=5):
indices, sentences, labels = readNewFile(file=loadPath, vocab2intPath=vocab2intPath)
num_words = [len(sentence) for sentence in sentences]
self.df = pd.DataFrame({"id": indices, "sentence": sentences, "label": labels,
"sentence_length": num_words})
df=self.df.sort_values("sentence_length").reset_index(drop=True)
self.total_size=len(df)
part_size=self.total_size//num_buckets
self.dfs=[]
for i in range(num_buckets):
self.dfs.append(df.ix[i*part_size:(i+1)*part_size-1])
self.dfs[num_buckets-1].append(df.ix[num_buckets*part_size:self.total_size-1])
self.num_buckets=num_buckets
self.cursor=np.array([0]*num_buckets)
self.p_list=[1/self.num_buckets]*self.num_buckets
self.loop=0
self.max_len=general_config.max_seq_len
self.shuffle()
def shuffle(self):
for i in range(self.num_buckets):
self.dfs[i]=self.dfs[i].sample(frac=1).reset_index(drop=True)
self.cursor[i]=0
def next(self,batch_size,need_all=False):
for i in range(self.num_buckets):
if need_all:
if self.cursor[i]>=len(self.dfs[i]):
self.p_list[i]=0
else:
if self.cursor[i]+batch_size>len(self.dfs[i]):
self.p_list[i] = 0
if sum(self.p_list) == 0:
self.shuffle()
self.loop += 1
self.p_list = [1 / self.num_buckets] * self.num_buckets
else:
times = 1 / sum(self.p_list)
self.p_list = [times * p for p in self.p_list]
selected=np.random.choice(a=np.arange(self.num_buckets),size=1,p=self.p_list)[0]
if need_all:
batch_size=min(batch_size,len(self.dfs[selected])-self.cursor[selected])
res=self.dfs[selected].ix[self.cursor[selected]:self.cursor[selected]+batch_size-1,:]
self.cursor[selected]+=batch_size
tmp_max_len=max(res["sentence_length"].values)
max_len=min(tmp_max_len,self.max_len)
res_=np.zeros(shape=[batch_size,max_len],dtype=np.int32)
for idx,res_r in enumerate(res_):
# 少的pad,多的cut。
tmp_len=min(max_len,res["sentence_length"].values[idx])
res_r[:tmp_len]=res["sentence"].values[idx][:tmp_len]
return res["id"].values,res_,res["label"].values,res["sentence_length"].values
def ensure_dir_exist(dir):
if not os.path.exists(dir):
os.makedirs(dir)
return dir
def WriteToSubmission(res,fileName):
fileDir=os.path.dirname(fileName)
ensure_dir_exist(fileDir)
tmp=pd.DataFrame(res,columns=["id","label"])
tmp=tmp.sort_values(by="id",axis=0,ascending=True)
tmp.to_csv(fileName,index=False)
"""
将单词列表形式的句子转为句子列表形式的文档,
以"."、"?"、"!"为句子分隔符。
"""
def sentence2doc(words,v2i=None):
if v2i is None:
selected=[".","?","!"]
else:
selected=[v2i["."],v2i["?"],v2i["!"]]
doc=[]
sentence=[]
for word in words:
sentence.append(word)
if word in selected:
doc.append(sentence)
sentence=[]
if len(sentence)>0:
doc.append(sentence)
if len(doc)==0:
print(words)
return doc
class BucketedDataIteratorForDoc(object):
def __init__(self, loadPath,vocab2intPath,num_buckets=5):
indices, sentences, labels = readNewFile(file=loadPath, vocab2intPath=vocab2intPath)
v2i=loadDict(vocab2intPath)
docs=[]
num_sentences=[]
num_words=[]
num_words_flat=[]
for sentence in sentences:
doc=sentence2doc(sentence,v2i)
docs.append(doc)
num_sentences.append(len(doc))
num_words_=[len(_) for _ in doc]
num_words.append(num_words_)
num_words_flat.extend(num_words_)
# print(max(num_sentences))
# print(max(num_words_flat))
# print(num_words[:5])
self.df = pd.DataFrame({"id": indices, "doc":docs, "label": labels,
"doc_length": num_sentences,"sentence_length":num_words})
df=self.df.sort_values("doc_length").reset_index(drop=True)
self.total_size=len(df)
part_size=self.total_size//num_buckets
self.dfs=[]
for i in range(num_buckets):
self.dfs.append(df.ix[i*part_size:(i+1)*part_size-1])
self.dfs[num_buckets-1].append(df.ix[num_buckets*part_size:self.total_size-1])
self.num_buckets=num_buckets
self.cursor=np.array([0]*num_buckets)
self.p_list=[1/self.num_buckets]*self.num_buckets
self.loop=0
self.shuffle()
def shuffle(self):
for i in range(self.num_buckets):
self.dfs[i]=self.dfs[i].sample(frac=1).reset_index(drop=True)
self.cursor[i]=0
def next(self,batch_size,need_all=False):
for i in range(self.num_buckets):
if need_all:
if self.cursor[i]>=len(self.dfs[i]):
self.p_list[i]=0
else:
if self.cursor[i]+batch_size>len(self.dfs[i]):
self.p_list[i] = 0
if sum(self.p_list) == 0:
self.shuffle()
self.loop += 1
self.p_list = [1 / self.num_buckets] * self.num_buckets
else:
times = 1 / sum(self.p_list)
self.p_list = [times * p for p in self.p_list]
selected=np.random.choice(a=np.arange(self.num_buckets),size=1,p=self.p_list)[0]
if need_all:
batch_size=min(batch_size,len(self.dfs[selected])-self.cursor[selected])
res=self.dfs[selected].ix[self.cursor[selected]:self.cursor[selected]+batch_size-1,:]
self.cursor[selected]+=batch_size
max_doc_len=np.max(res["doc_length"].values)
sentence_length_flat=[]
for l in res["sentence_length"].values:
sentence_length_flat.extend(l)
max_sen_len=np.max(sentence_length_flat)
res_=np.zeros(shape=[batch_size,max_doc_len,max_sen_len],dtype=np.int32)
res_sen_len=np.zeros(shape=[batch_size,max_doc_len],dtype=np.int32)
for b in range(batch_size):
doc_len=res["doc_length"].values[b]
for d in range(doc_len):
sen_len=res["sentence_length"].values[b][d]
# 少的pad。
res_[b,d,:sen_len]=res["doc"].values[b][d]
res_sen_len[b,d]=res["sentence_length"].values[b][d]
# res_=np.reshape(res_,newshape=(batch_size,-1))
# print(res_.shape)
# print(res_sen_len.shape)
return res["id"].values,res_,res["label"].values,res["doc_length"].values,res_sen_len
def my_logger(logging_path):
# 生成日志
logger = logging.getLogger(__name__)
logger.setLevel(level=logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
logger.handlers = []
assert len(logger.handlers) == 0
handler = logging.FileHandler(logging_path)
handler.setLevel(logging.INFO)
handler.setFormatter(formatter)
console = logging.StreamHandler()
console.setLevel(logging.INFO)
# console.setFormatter(formatter)
logger.addHandler(handler)
logger.addHandler(console)
return logger