Skip to content

Latest commit

 

History

History
47 lines (31 loc) · 1.26 KB

README.md

File metadata and controls

47 lines (31 loc) · 1.26 KB

follow https://www.nature.com/articles/nature14236

#1.train DQN python train_DQN.py GPU_id [pretrained_path] #The GPU_id value should be one of ['cpu','0','1','2','3']

model checkpoint path:baseline/DQN/results

----Communication setting see ../baseline_utils.py class Game

--reset method socket = context.socket(zmq.REQ) socket.connect('tcp://127.0.0.1:'+self.port_initial) #port_initial default 6667 #inform backend to initialize environment socket.send(b'initial')

#create new socket to receive initial environment self.socket = context.socket(zmq.REP) self.socket.bind('tcp://*:'+self.port_recv) #port_recv default 5556 message_raw = self.socket.recv()

--step method self.socket = context.socket(zmq.REP) self.socket.bind('tcp://*:'+ self.port_recv) #same as above self.socket

#send action to backend self.socket.send(message.SerializeToString()) #receive new environment information message_raw = self.socket.recv()

#default model checkpoint path is DQN/results

#2.test DQN #Method 1 python test_DQN.py GPU_id PORT [pretrained_path]

#method 2 #or you can modify inference.py and execute python inference.py > inference.sh bash inference.sh

#and you can execute bash start_reboot.sh to reboot inference server when it crash because of torch.cuda.OutOfMemoryError