-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathBP.py
166 lines (138 loc) · 4.99 KB
/
BP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import math
import random
import string
random.seed(0)
# 生成区间[a, b)内的随机数
def rand(a, b):
return (b-a)*random.random() + a
# 生成大小 I*J 的矩阵,默认零矩阵 (当然,亦可用 NumPy 提速)
def makeMatrix(I, J, fill=0.0):
m = []
for i in range(I):
m.append([fill]*J)
return m
# 函数 sigmoid,这里采用 tanh,因为看起来要比标准的 1/(1+e^-x) 漂亮些
def sigmoid(x):
return math.tanh(x)
# 函数 sigmoid 的派生函数, 为了得到输出 (即:y)
def dsigmoid(y):
return 1.0 - y**2
class NN:
''' 三层反向传播神经网络 '''
def __init__(self, ni, nh, no):
# 输入层、隐藏层、输出层的节点(数)
self.ni = ni + 1 # 增加一个偏差节点
self.nh = nh
self.no = no
# 激活神经网络的所有节点(向量)
self.ai = [1.0]*self.ni
self.ah = [1.0]*self.nh
self.ao = [1.0]*self.no
# 建立权重(矩阵)
self.wi = makeMatrix(self.ni, self.nh)
self.wo = makeMatrix(self.nh, self.no)
# 设为随机值
for i in range(self.ni):
for j in range(self.nh):
self.wi[i][j] = rand(-0.2, 0.2)
for j in range(self.nh):
for k in range(self.no):
self.wo[j][k] = rand(-2.0, 2.0)
# 最后建立动量因子(矩阵)
self.ci = makeMatrix(self.ni, self.nh)
self.co = makeMatrix(self.nh, self.no)
def update(self, inputs):
if len(inputs) != self.ni-1:
raise ValueError('与输入层节点数不符!')
# 激活输入层
for i in range(self.ni-1):
#self.ai[i] = sigmoid(inputs[i])
self.ai[i] = inputs[i]
# 激活隐藏层
for j in range(self.nh):
sum = 0.0
for i in range(self.ni):
sum = sum + self.ai[i] * self.wi[i][j]
self.ah[j] = sigmoid(sum)
# 激活输出层
for k in range(self.no):
sum = 0.0
for j in range(self.nh):
sum = sum + self.ah[j] * self.wo[j][k]
self.ao[k] = sigmoid(sum)
return self.ao[:]
def backPropagate(self, targets, N, M):
''' 反向传播 '''
if len(targets) != self.no:
raise ValueError('与输出层节点数不符!')
# 计算输出层的误差
output_deltas = [0.0] * self.no
for k in range(self.no):
error = targets[k]-self.ao[k]
output_deltas[k] = dsigmoid(self.ao[k]) * error
# 计算隐藏层的误差
hidden_deltas = [0.0] * self.nh
for j in range(self.nh):
error = 0.0
for k in range(self.no):
error = error + output_deltas[k]*self.wo[j][k]
hidden_deltas[j] = dsigmoid(self.ah[j]) * error
# 更新输出层权重
for j in range(self.nh):
for k in range(self.no):
change = output_deltas[k]*self.ah[j]
self.wo[j][k] = self.wo[j][k] + N*change + M*self.co[j][k]
self.co[j][k] = change
#print(N*change, M*self.co[j][k])
# 更新输入层权重
for i in range(self.ni):
for j in range(self.nh):
change = hidden_deltas[j]*self.ai[i]
self.wi[i][j] = self.wi[i][j] + N*change + M*self.ci[i][j]
self.ci[i][j] = change
# 计算误差
error = 0.0
for k in range(len(targets)):
error = error + 0.5*(targets[k]-self.ao[k])**2
return error
def test(self, patterns):
for p in patterns:
print(p[0], '->', self.update(p[0]))
def weights(self):
print('输入层权重:')
for i in range(self.ni):
print(self.wi[i])
print()
print('输出层权重:')
for j in range(self.nh):
print(self.wo[j])
def train(self, patterns, iterations=1000, N=0.5, M=0.1):
# N: 学习速率(learning rate)
# M: 动量因子(momentum factor)
for i in range(iterations):
error = 0.0
for p in patterns:
inputs = p[0]
targets = p[1]
self.update(inputs)
error = error + self.backPropagate(targets, N, M)
if i % 100 == 0:
print('误差 %-.5f' % error)
def demo():
# 一个演示:教神经网络学习逻辑异或(XOR)------------可以换成你自己的数据试试
pat = [
[[0,0], [0]],
[[0,1], [1]],
[[1,0], [1]],
[[1,1], [0]]
]
# 创建一个神经网络:输入层有两个节点、隐藏层有两个节点、输出层有一个节点
n = NN(2, 2, 1)
# 用一些模式训练它
n.train(pat)
# 测试训练的成果(不要吃惊哦)
n.test(pat)
# 看看训练好的权重(当然可以考虑把训练好的权重持久化)
#n.weights()
if __name__ == '__main__':
demo()