This plugin ports dbt functionality to Clickhouse.
The plugin uses syntax that requires ClickHouse version 22.1 or newer. We do not test older versions of Clickhouse. We
also do not currently test
Replicated tables or the related ON CLUSTER
functionality.
Use your favorite Python package manager to install the app from PyPI, e.g.
pip install dbt-core dbt-clickhouse
NOTE: Beginning in v1.8, dbt-core and adapters are decoupled. Therefore, the installation mentioned above explicitly includes both dbt-core and the desired adapter.If you use a version prior to 1.8.0 the pip installation command should look like this:
pip install dbt-clickhouse
- Table materialization
- View materialization
- Incremental materialization
- Materialized View materializations (uses the
TO
form of MATERIALIZED VIEW, experimental) - Seeds
- Sources
- Docs generate
- Tests
- Snapshots
- Most dbt-utils macros (now included in dbt-core)
- Ephemeral materialization
- Distributed table materialization (experimental)
- Distributed incremental materialization (experimental)
- Contracts
In many environments, using the SET statement to persist a ClickHouse setting across all DBT queries is not reliable and can cause unexpected failures. This is particularly true when using HTTP connections through a load balancer that distributes queries across multiple nodes (such as ClickHouse cloud), although in some circumstances this can also happen with native ClickHouse connections. Accordingly, we recommend configuring any required ClickHouse settings in the "custom_settings" property of the DBT profile as a best practice, instead of relying on a prehook "SET" statement as has been occasionally suggested.
The dbt model relation identifier database.schema.table
is not compatible with Clickhouse because Clickhouse does not
support a schema
.
So we use a simplified approach schema.table
, where schema
is the Clickhouse database. Using the default
database
is not recommended.
Default values are in brackets:
your_profile_name:
target: dev
outputs:
dev:
type: clickhouse
schema: [default] # ClickHouse database for dbt models
# optional
driver: [http] # http or native. If not set this will be autodetermined based on port setting
host: [localhost]
port: [8123] # If not set, defaults to 8123, 8443, 9000, 9440 depending on the secure and driver settings
user: [default] # User for all database operations
password: [<empty string>] # Password for the user
cluster: [<empty string>] # If set, certain DDL/table operations will be executed with the `ON CLUSTER` clause using this cluster. Distributed materializations require this setting to work. See the following ClickHouse Cluster section for more details.
verify: [True] # Validate TLS certificate if using TLS/SSL
secure: [False] # Use TLS (native protocol) or HTTPS (http protocol)
retries: [1] # Number of times to retry a "retriable" database exception (such as a 503 'Service Unavailable' error)
compression: [<empty string>] # Use gzip compression if truthy (http), or compression type for a native connection
connect_timeout: [10] # Timeout in seconds to establish a connection to ClickHouse
send_receive_timeout: [300] # Timeout in seconds to receive data from the ClickHouse server
cluster_mode: [False] # Use specific settings designed to improve operation on Replicated databases (recommended for ClickHouse Cloud)
use_lw_deletes: [False] # Use the strategy `delete+insert` as the default incremental strategy.
check_exchange: [True] # Validate that clickhouse support the atomic EXCHANGE TABLES command. (Not needed for most ClickHouse versions)
local_suffix: [_local] # Table suffix of local tables on shards for distributed materializations.
local_db_prefix: [<empty string>] # Database prefix of local tables on shards for distributed materializations. If empty, it uses the same database as the distributed table.
allow_automatic_deduplication: [False] # Enable ClickHouse automatic deduplication for Replicated tables
tcp_keepalive: [False] # Native client only, specify TCP keepalive configuration. Specify custom keepalive settings as [idle_time_sec, interval_sec, probes].
custom_settings: [{}] # A dictionary/mapping of custom ClickHouse settings for the connection - default is empty.
# Native (clickhouse-driver) connection settings
sync_request_timeout: [5] # Timeout for server ping
compress_block_size: [1048576] # Compression block size if compression is enabled
Option | Description | Default if any |
---|---|---|
engine | The table engine (type of table) to use when creating tables | MergeTree() |
order_by | A tuple of column names or arbitrary expressions. This allows you to create a small sparse index that helps find data faster. | tuple() |
partition_by | A partition is a logical combination of records in a table by a specified criterion. The partition key can be any expression from the table columns. | |
sharding_key | Sharding key determines the destination server when inserting into distributed engine table. The sharding key can be random or as an output of a hash function | rand() ) |
primary_key | Like order_by, a ClickHouse primary key expression. If not specified, ClickHouse will use the order by expression as the primary key | |
unique_key | A tuple of column names that uniquely identify rows. Used with incremental models for updates. | |
inserts_only | If set to True for an incremental model, incremental updates will be inserted directly to the target table without creating intermediate table. It has been deprecated in favor of the append incremental strategy , which operates in the same way. If inserts_only is set, incremental_strategy is ignored. |
|
incremental_strategy | Incremental model update strategy: delete+insert , append , or insert_overwrite . See the following Incremental Model Strategies |
default |
incremental_predicates | Additional conditions to be applied to the incremental materialization (only applied to delete+insert strategy |
|
settings | A map/dictionary of "TABLE" settings to be used to DDL statements like 'CREATE TABLE' with this model | |
query_settings | A map/dictionary of ClickHouse user level settings to be used with INSERT or DELETE statements in conjunction with this model |
|
ttl | A TTL expression to be used with the table. The TTL expression is a string that can be used to specify the TTL for the table. | |
indexes | A list of indexes to create, available only for table materialization. For examples look at (#397) |
Option | Description | Default if any |
---|---|---|
codec | A string consisting of arguments passed to CODEC() in the column's DDL. For example: codec: "Delta, ZSTD" will be interpreted as CODEC(Delta, ZSTD) . |
The cluster
setting in profile enables dbt-clickhouse to run against a ClickHouse cluster.
if cluster
is set in profile, on_cluster_clause
now will return cluster info for:
- Database creation
- View materialization
- Distributed materializations
- Models with Replicated engines
By default, tables and incremental materializations with non-replicated engines will not be affected by the cluster
setting (model would be created on the connected node only).
To force relations to be created on a cluster regardless of their engine or materialization, use the force_on_cluster
argument:
{{ config(
engine='Null',
materialized='materialized_view',
force_on_cluster='true'
)
}}
table and incremental materializations with non-replicated engine will not be affected by cluster
setting (model would
be created on the connected node only).
If a model has been created without a cluster
setting, dbt-clickhouse will detect the situation and run all DDL/DML
without on cluster
clause for this model.
ClickHouse has several types/levels of "settings". In the model configuration above, two types of these are
configurable. settings
means the SETTINGS
clause used in CREATE TABLE/VIEW
types of DDL statements, so this is generally settings that are specific to the
specific ClickHouse table engine. The new
query_settings
is use to add a SETTINGS
clause to the INSERT
and DELETE
queries used for model materialization (
including incremental materializations).
There are hundreds of ClickHouse settings, and it's not always clear which is a "table" setting and which is a "user"
setting (although the latter are generally
available in the system.settings
table.) In general the defaults are recommended, and any use of these properties
should be carefully researched and tested.
- Ephemeral models/CTEs don't work if placed before the "INSERT INTO" in a ClickHouse insert statement, see ClickHouse/ClickHouse#30323. This should not affect most models, but care should be taken where an ephemeral model is placed in model definitions and other SQL statements.
As of version 1.3.2, dbt-clickhouse supports three incremental model strategies.
Historically ClickHouse has had only limited support for updates and deletes, in the form of asynchronous "mutations." To emulate expected dbt behavior, dbt-clickhouse by default creates a new temporary table containing all unaffected (not deleted, not changed) "old" records, plus any new or updated records, and then swaps or exchanges this temporary table with the existing incremental model relation. This is the only strategy that preserves the original relation if something goes wrong before the operation completes; however, since it involves a full copy of the original table, it can be quite expensive and slow to execute.
ClickHouse added "lightweight deletes" as an experimental feature in version 22.8. Lightweight deletes are significantly
faster than ALTER TABLE ... DELETE
operations, because they don't require rewriting ClickHouse data parts. The incremental strategy delete+insert
utilizes lightweight deletes to implement
incremental materializations that perform significantly better than the "legacy" strategy. However, there are important
caveats to using this strategy:
- Lightweight deletes must be enabled on your ClickHouse server using the setting
allow_experimental_lightweight_delete=1
or you must setuse_lw_deletes=true
in your profile (which will enable that setting for your dbt sessions) - Lightweight deletes are now production ready, but there may be performance and other problems on ClickHouse versions earlier than 23.3.
- This strategy operates directly on the affected table/relation (with creating any intermediate or temporary tables), so if there is an issue during the operation, the data in the incremental model is likely to be in an invalid state
- When using lightweight deletes, dbt-clickhouse enabled the setting
allow_nondeterministic_mutations
. In some very rare cases using non-deterministic incremental_predicates this could result in a race condition for the updated/deleted items (and related log messages in the ClickHouse logs). To ensure consistent results the incremental predicates should only include sub-queries on data that will not be modified during the incremental materialization.
This strategy replaces the inserts_only
setting in previous versions of dbt-clickhouse. This approach simply appends
new rows to the existing relation.
As a result duplicate rows are not eliminated, and there is no temporary or intermediate table. It is the fastest
approach if duplicates are either permitted
in the data or excluded by the incremental query WHERE clause/filter.
[IMPORTANT]
Currently, the insert_overwrite strategy is not fully functional with distributed materializations.
Performs the following steps:
- Create a staging (temporary) table with the same structure as the incremental model relation:
CREATE TABLE <staging> AS <target>
. - Insert only new records (produced by
SELECT
) into the staging table. - Replace only new partitions (present in the staging table) into the target table.
This approach has the following advantages:
- It is faster than the default strategy because it doesn't copy the entire table.
- It is safer than other strategies because it doesn't modify the original table until the INSERT operation completes successfully: in case of intermediate failure, the original table is not modified.
- It implements "partitions immutability" data engineering best practice. Which simplifies incremental and parallel data processing, rollbacks, etc.
The strategy requires partition_by
to be set in the model configuration. Ignores all other strategies-specific
parameters of the model config.
The following macros are included to facilitate creating ClickHouse specific tables and views:
engine_clause
-- Uses theengine
model configuration property to assign a ClickHouse table engine. dbt-clickhouse uses theMergeTree
engine by default.partition_cols
-- Uses thepartition_by
model configuration property to assign a ClickHouse partition key. No partition key is assigned by default.order_cols
-- Uses theorder_by
model configuration to assign a ClickHouse order by/sorting key. If not specified ClickHouse will use an empty tuple() and the table will be unsortedprimary_key_clause
-- Uses theprimary_key
model configuration property to assign a ClickHouse primary key. By default, primary key is set and ClickHouse will use the order by clause as the primary key.on_cluster_clause
-- Uses thecluster
profile property to add anON CLUSTER
clause to certain dbt-operations: distributed materializations, views creation, database creation.ttl_config
-- Uses thettl
model configuration property to assign a ClickHouse table TTL expression. No TTL is assigned by default.
The s3source
macro simplifies the process of selecting ClickHouse data directly from S3 using the ClickHouse S3 table
function. It works by
populating the S3 table function parameters from a named configuration dictionary (the name of the dictionary must end
in s3
). The macro
first looks for the dictionary in the profile vars
, and then in the model configuration. The dictionary can contain
any of the following
keys used to populate the parameters of the S3 table function:
Argument Name | Description |
---|---|
bucket | The bucket base url, such as https://datasets-documentation.s3.eu-west-3.amazonaws.com/nyc-taxi . https:// is assumed if no protocol is provided. |
path | The S3 path to use for the table query, such as /trips_4.gz . S3 wildcards are supported. |
fmt | The expected ClickHouse input format (such as TSV or CSVWithNames ) of the referenced S3 objects. |
structure | The column structure of the data in bucket, as a list of name/datatype pairs, such as ['id UInt32', 'date DateTime', 'value String'] If not provided ClickHouse will infer the structure. |
aws_access_key_id | The S3 access key id. |
aws_secret_access_key | The S3 secret key. |
role_arn | The ARN of a ClickhouseAccess IAM role to use to securely access the S3 objects. See this documentation for more information. |
compression | The compression method used with the S3 objects. If not provided ClickHouse will attempt to determine compression based on the file name. |
See the S3 test file for examples of how to use this macro.
Only exact column type contracts are supported. For example, a contract with a UInt32 column type will fail if the model
returns a UInt64 or other integer type.
ClickHouse also support only CHECK
constraints on the entire table/model. Primary key, foreign key, unique, and
column level CHECK constraints are not supported.
(See ClickHouse documentation on primary/order by keys.)
A materialized_view
materialization should be a SELECT
from an existing (source) table. The adapter will create a
target table with the model name
and a ClickHouse MATERIALIZED VIEW with the name <model_name>_mv
. Unlike PostgreSQL, a ClickHouse materialized view is
not "static" (and has
no corresponding REFRESH operation). Instead, it acts as an "insert trigger", and will insert new rows into the target
table using the defined SELECT
"transformation" in the view definition on rows inserted into the source table. See the test file
for an introductory example
of how to use this functionality.
Clickhouse provides the ability for more than one materialized view to write records to the same target table. To
support this in dbt-clickhouse, you can construct a UNION
in your model file, such that the SQL for each of your
materialized views is wrapped with comments of the form --my_mv_name:begin
and --my_mv_name:end
.
For example the following will build two materialized views both writing data to the same destination table of the
model. The names of the materialized views will take the form <model_name>_mv1
and <model_name>_mv2
:
--mv1:begin
select a,b,c from {{ source('raw', 'table_1') }}
--mv1:end
union all
--mv2:begin
select a,b,c from {{ source('raw', 'table_2') }}
--mv2:end
IMPORTANT!
When updating a model with multiple materialized views (MVs), especially when renaming one of the MV names, dbt-clickhouse does not automatically drop the old MV. Instead, you will encounter the following warning:
Warning - Table <previous table name> was detected with the same pattern as model name <your model name> but was not found in this run. In case it is a renamed mv that was previously part of this model, drop it manually (!!!)
Currently, when creating a materialized view (MV), the target table is first populated with historical data before the MV itself is created.
In other words, dbt-clickhouse initially creates the target table and preloads it with historical data based on the query defined for the MV. Only after this step is the MV created.
If you prefer not to preload historical data during MV creation, you can disable this behavior by setting the catchup config to False:
{{config(
materialized='materialized_view',
engine='MergeTree()',
order_by='(id)',
catchup=False
)}}
To use Refreshable Materialized View, please adjust the following configs as needed in your MV model (all these configs are supposed to be set inside a refreshable config object):
Option | Description | Required | Default Value |
---|---|---|---|
refresh_interval | The interval clause (required) | Yes | |
randomize | The randomization clause, will appear after RANDOMIZE FOR |
||
append | If set to True , each refresh inserts rows into the table without deleting existing rows. The insert is not atomic, just like a regular INSERT SELECT. |
False | |
depends_on | A dependencies list for the refreshable mv. Please provide the dependencies in the following format {schema}.{view_name} |
||
depends_on_validation | Whether to validate the existence of the dependencies provided in depends_on . In case a dependency doesn't contain a schema, the validation occurs on schema default |
False |
A config example for refreshable materialized view:
{{
config(
materialized='materialized_view',
refreshable={
"interval": "EVERY 5 MINUTE",
"randomize": "1 MINUTE",
"append": True,
"depends_on": ['schema.depend_on_model'],
"depends_on_validation": True
}
)
}}
- When creating a refreshable materialized view (MV) in ClickHouse that has a dependency, ClickHouse does not throw an error if the specified dependency does not exist at the time of creation. Instead, the refreshable MV remains in an inactive state, waiting for the dependency to be satisfied before it starts processing updates or refreshing. This behavior is by design, but it may lead to delays in data availability if the required dependency is not addressed promptly. Users are advised to ensure all dependencies are correctly defined and exist before creating a refreshable materialized view.
- As of today, there is no actual "dbt linkage" between the mv and its dependencies, therefore the creation order is not guaranteed.
- The refreshable feature was not tested with multiple mvs directing to the same target model.
See the tests in https://github.com/ClickHouse/dbt-clickhouse/blob/main/tests/integration/adapter/dictionary/test_dictionary.py for examples of how to implement materializations for ClickHouse dictionaries
Notes:
- dbt-clickhouse queries now automatically include the setting
insert_distributed_sync = 1
in order to ensure that downstream incremental materialization operations execute correctly. This could cause some distributed table inserts to run more slowly than expected.
Distributed table created with following steps:
- Creates temp view with sql query to get right structure
- Create empty local tables based on view
- Create distributed table based on local tables.
- Data inserts into distributed table, so it is distributed across shards without duplicating.
{{
config(
materialized='distributed_table',
order_by='id, created_at',
sharding_key='cityHash64(id)',
engine='ReplacingMergeTree'
)
}}
select id, created_at, item
from {{ source('db', 'table') }}
CREATE TABLE db.table_local on cluster cluster
(
`id`
UInt64,
`created_at`
DateTime,
`item`
String
)
ENGINE = ReplacingMergeTree
ORDER BY
(
id,
created_at
)
SETTINGS index_granularity = 8192;
CREATE TABLE db.table on cluster cluster
(
`id`
UInt64,
`created_at`
DateTime,
`item`
String
)
ENGINE = Distributed
(
'cluster',
'db',
'table_local',
cityHash64
(
id
));
Incremental model based on the same idea as distributed table, the main difficulty is to process all incremental strategies correctly.
- The Append Strategy just insert data into distributed table.
- The Delete+Insert Strategy creates distributed temp table to work with all data on every shard.
- The Default (Legacy) Strategy creates distributed temp and intermediate tables for the same reason.
Only shard tables are replacing, because distributed table does not keep data. The distributed table reloads only when the full_refresh mode is enabled or the table structure may have changed.
{{
config(
materialized='distributed_incremental',
engine='MergeTree',
incremental_strategy='append',
unique_key='id,created_at'
)
}}
select id, created_at, item
from {{ source('db', 'table') }}
CREATE TABLE db.table_local on cluster cluster
(
`id`
UInt64,
`created_at`
DateTime,
`item`
String
)
ENGINE = MergeTree
SETTINGS index_granularity = 8192;
CREATE TABLE db.table on cluster cluster
(
`id`
UInt64,
`created_at`
DateTime,
`item`
String
)
ENGINE = Distributed
(
'cluster',
'db',
'table_local',
cityHash64
(
id
));
We welcome contributions from the community to help improve the dbt-ClickHouse adapter. Whether you’re fixing a bug, adding a new feature, or enhancing documentation, your efforts are greatly appreciated!
Please take a moment to read our Contribution Guide to get started. The guide provides detailed instructions on setting up your environment, running tests, and submitting pull requests.
ClickHouse wants to thank @silentsokolov for creating this connector and for their valuable contributions.