Skip to content

Commit

Permalink
remove hyper test
Browse files Browse the repository at this point in the history
  • Loading branch information
Jammy2211 committed Aug 20, 2024
1 parent 9f31531 commit d95d040
Show file tree
Hide file tree
Showing 2 changed files with 1 addition and 86 deletions.
2 changes: 1 addition & 1 deletion requirements.txt
Original file line number Diff line number Diff line change
@@ -1 +1 @@
nautilus-sampler==1.0.2
nautilus-sampler==1.0.4
85 changes: 0 additions & 85 deletions test_autocti/charge_injection/model/test_analysis_ci.py
Original file line number Diff line number Diff line change
Expand Up @@ -225,88 +225,3 @@ def test__full_and_extracted_fits_from_instance_and_imaging_ci(
assert fit_full_analysis.log_likelihood == pytest.approx(fit.log_likelihood)


def test__extracted_fits_from_instance_and_imaging_ci__include_noise_scaling(
imaging_ci_7x7,
mask_2d_7x7_unmasked,
traps_x1,
ccd,
parallel_clocker_2d,
layout_ci_7x7,
):
model = af.Collection(
cti=af.Model(ac.CTI2D, parallel_trap_list=traps_x1, parallel_ccd=ccd),
hyper_noise=af.Model(
ac.HyperCINoiseCollection, regions_ci=ac.HyperCINoiseScalar
),
)

imaging_ci_7x7.noise_scaling_map_dict = {
"regions_ci": ac.Array2D.ones(shape_native=(7, 7), pixel_scales=1.0).native
}

imaging_ci_full = copy.deepcopy(imaging_ci_7x7)

masked_dataset = imaging_ci_7x7.apply_mask(mask=mask_2d_7x7_unmasked)
masked_dataset = masked_dataset.apply_settings(
settings=ac.SettingsImagingCI(parallel_pixels=(0, 1))
)

analysis = ac.AnalysisImagingCI(dataset=masked_dataset, clocker=parallel_clocker_2d)

instance = model.instance_from_prior_medians()

fit_analysis = analysis.fit_via_instance_from(
instance=instance, hyper_noise_scale=True
)

cti = ac.CTI2D(parallel_trap_list=traps_x1, parallel_ccd=ccd)

post_cti_data = parallel_clocker_2d.add_cti(
data=masked_dataset.pre_cti_data, cti=cti
)

fit = ac.FitImagingCI(
dataset=masked_dataset,
post_cti_data=post_cti_data,
hyper_noise_scalar_dict={
"regions_ci": instance.hyper_noise.as_dict["regions_ci"]
},
)

assert fit.data.shape == (7, 1)
assert fit.log_likelihood == pytest.approx(fit_analysis.log_likelihood, 1.0e-4)

fit = ac.FitImagingCI(
dataset=masked_dataset,
post_cti_data=post_cti_data,
hyper_noise_scalar_dict={"regions_ci": ac.HyperCINoiseScalar(scale_factor=0.0)},
)

assert fit.log_likelihood != pytest.approx(fit_analysis.log_likelihood, 1.0e-4)

fit_full_analysis = analysis.fit_via_instance_and_dataset_from(
instance=instance,
dataset=imaging_ci_full,
hyper_noise_scale=True,
)

masked_dataset = imaging_ci_7x7.apply_mask(mask=mask_2d_7x7_unmasked)

fit = ac.FitImagingCI(
dataset=masked_dataset,
post_cti_data=post_cti_data,
hyper_noise_scalar_dict={
"regions_ci": instance.hyper_noise.as_dict["regions_ci"]
},
)

assert fit.data.shape == (7, 7)
assert fit.log_likelihood == pytest.approx(fit_full_analysis.log_likelihood, 1.0e-4)

fit = ac.FitImagingCI(
dataset=masked_dataset,
post_cti_data=post_cti_data,
hyper_noise_scalar_dict={"regions_ci": ac.HyperCINoiseScalar(scale_factor=0.0)},
)

assert fit.log_likelihood != pytest.approx(fit_full_analysis.log_likelihood, 1.0e-4)

0 comments on commit d95d040

Please sign in to comment.