Skip to content

Commit

Permalink
Merge pull request #124 from adrsm108/divisors
Browse files Browse the repository at this point in the history
Divisors function
  • Loading branch information
oscardssmith authored Aug 21, 2022
2 parents 560a9f4 + 458a2c4 commit fde566c
Show file tree
Hide file tree
Showing 4 changed files with 122 additions and 4 deletions.
1 change: 1 addition & 0 deletions docs/src/api.md
Original file line number Diff line number Diff line change
Expand Up @@ -34,4 +34,5 @@ Primes.primesmask
```@docs
Primes.radical
Primes.totient
Primes.divisors
```
93 changes: 89 additions & 4 deletions src/Primes.jl
Original file line number Diff line number Diff line change
@@ -1,15 +1,14 @@
# This file includes code that was formerly a part of Julia. License is MIT: http://julialang.org/license

module Primes

using Base.Iterators: repeated
using Base.Iterators: repeated, rest

import Base: iterate, eltype, IteratorSize, IteratorEltype
using Base: BitSigned
using Base.Checked: checked_neg
using IntegerMathUtils

export isprime, primes, primesmask, factor, eachfactor, ismersenneprime, isrieselprime,
export isprime, primes, primesmask, factor, eachfactor, divisors, ismersenneprime, isrieselprime,
nextprime, nextprimes, prevprime, prevprimes, prime, prodfactors, radical, totient

include("factorization.jl")
Expand Down Expand Up @@ -592,7 +591,7 @@ given by `f`. This method may be preferable to [`totient(::Integer)`](@ref)
when the factorization can be reused for other purposes.
"""
function totient(f::Factorization{T}) where T <: Integer
if !isempty(f) && first(first(f)) == 0
if iszero(sign(f))
throw(ArgumentError("ϕ(0) is not defined"))
end
result = one(T)
Expand Down Expand Up @@ -908,4 +907,90 @@ julia> prevprimes(10, 10)
prevprimes(start::T, n::Integer) where {T<:Integer} =
collect(T, Iterators.take(prevprimes(start), n))

"""
divisors(n::Integer) -> Vector
Return a vector with the positive divisors of `n`.
For a nonzero integer `n` with prime factorization `n = p₁^k₁ ⋯ pₘ^kₘ`, `divisors(n)`
returns a vector of length (k₁ + 1)⋯(kₘ + 1) containing the divisors of `n` in
lexicographic (rather than numerical) order.
`divisors(-n)` is equivalent to `divisors(n)`.
For convenience, `divisors(0)` returns `[]`.
# Example
```jldoctest
julia> divisors(60)
12-element Vector{Int64}:
1 # 1
2 # 2
4 # 2 * 2
3 # 3
6 # 3 * 2
12 # 3 * 2 * 2
5 # 5
10 # 5 * 2
20 # 5 * 2 * 2
15 # 5 * 3
30 # 5 * 3 * 2
60 # 5 * 3 * 2 * 2
julia> divisors(-10)
4-element Vector{Int64}:
1
2
5
10
julia> divisors(0)
Int64[]
```
"""
function divisors(n::T) where {T<:Integer}
n = abs(n)
if iszero(n)
return T[]
elseif isone(n)
return [n]
else
return divisors(factor(n))
end
end

"""
divisors(f::Factorization) -> Vector
Return a vector with the positive divisors of the number whose factorization is `f`.
Divisors are sorted lexicographically, rather than numerically.
"""
function divisors(f::Factorization{T}) where {T<:Integer}
sgn = sign(f)
if iszero(sgn) # n == 0
return T[]
elseif isempty(f) || length(f) == 1 && sgn < 0 # n == 1 or n == -1
return [one(T)]
end

i = m = 1
fs = rest(f, 1 + (sgn < 0))
divs = Vector{T}(undef, prod(x -> x.second + 1, fs))
divs[i] = one(T)

for (p, k) in fs
i = 1
for _ in 1:k
for j in i:(i+m-1)
divs[j+m] = divs[j] * p
end
i += m
end
m += i - 1
end

return divs
end

end # module
2 changes: 2 additions & 0 deletions src/factorization.jl
Original file line number Diff line number Diff line change
Expand Up @@ -65,3 +65,5 @@ Base.length(f::Factorization) = length(f.pe)

Base.show(io::IO, ::MIME{Symbol("text/plain")}, f::Factorization) =
join(io, isempty(f) ? "1" : [(e == 1 ? "$p" : "$p^$e") for (p,e) in f.pe], " * ")

Base.sign(f::Factorization) = isempty(f.pe) ? one(keytype(f)) : sign(first(f.pe[1]))
30 changes: 30 additions & 0 deletions test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -236,6 +236,13 @@ end

@test factor(1) == Dict{Int,Int}()

# correctly return sign of factored numbers
@test sign(factor(100)) == 1
@test sign(factor(1)) == 1
@test sign(factor(0)) == 0
@test sign(factor(-1)) == -1
@test sign(factor(-100)) == -1

# factor returns a sorted dict
@test all([issorted(collect(factor(rand(Int)))) for x in 1:100])

Expand Down Expand Up @@ -313,6 +320,29 @@ end
end
end

# brute-force way to get divisors. Same elements as divisors(n), but order may differ.
divisors_brute_force(n) = [d for d in one(n):n if iszero(n % d)]

@testset "divisors(::$T)" for T in [Int16, Int32, Int64, BigInt]
# 1 and 0 are handled specially
@test divisors(one(T)) == divisors(-one(T)) == T[one(T)]
@test divisors(zero(T)) == T[]

for n in 2:1000
ds = divisors(T(n))
@test ds == divisors(-T(n))
@test sort!(ds) == divisors_brute_force(T(n))
end
end

@testset "divisors(::Factorization)" begin
# divisors(n) calls divisors(factor(abs(n))), so the previous testset covers most cases.
# We just need to verify that the following cases are also handled correctly:
@test divisors(factor(1)) == divisors(factor(-1)) == [1] # factorizations of 1 and -1
@test divisors(factor(-56)) == divisors(factor(56)) == [1, 2, 4, 8, 7, 14, 28, 56] # factorizations of negative numbers
@test isempty(divisors(factor(0)))
end

# check copy property for big primes relied upon in nextprime/prevprime
for n = rand(big(-10):big(10), 10)
@test n+0 !== n
Expand Down

0 comments on commit fde566c

Please sign in to comment.