This repository contains some of the homework I did for coursera Machine Learning Course.
My codes can be found in the following files.
- warmUpExercise.m - Simple example function in Octave/MATLAB
- plotData.m - Function to display the dataset
- computeCost.m - Function to compute the cost of linear regression
- gradientDescent.m - Function to run gradient descent
- plotData.m - Function to plot 2D classification data
- sigmoid.m - Sigmoid Function
- costFunction.m - Logistic Regression Cost Function
- predict.m - Logistic Regression Prediction Function
- costFunctionReg.m - Regularized Logistic Regression Cost
- lrCostFunction.m - Logistic regression cost function
- oneVsAll.m - Train a one-vs-all multi-class classifier
- predictOneVsAll.m - Predict using a one-vs-all multi-class classifier
- predict.m - Neural network prediction function
- sigmoidGradient.m - Compute the gradient of the sigmoid function
- randInitializeWeights.m - Randomly initialize weights
- nnCostFunction.m - Neural network cost function
- linearRegCostFunction.m - Regularized linear regression cost function
- learningCurve.m - Generates a learning curve
- polyFeatures.m - Maps data into polynomial feature space
- validationCurve.m - Generates a cross validation curve
- gaussianKernel.m - Gaussian kernel for SVM
- dataset3Params.m - Parameters to use for Dataset 3
- processEmail.m - Email preprocessing
- emailFeatures.m - Feature extraction from emails
- pca.m - Perform principal component analysis
- projectData.m - Projects a data set into a lower dimensional space
- recoverData.m - Recovers the original data from the projection
- findClosestCentroids.m-Findclosestcentroids(usedinK-means)
- computeCentroids.m - Compute centroid means (used in K-means)
- kMeansInitCentroids.m - Initialization for K-means centroids
- estimateGaussian.m - Estimate the parameters of a Gaussian dis- tribution with a diagonal covariance matrix
- selectThreshold.m - Find a threshold for anomaly detection
- cofiCostFunc.m - Implement the cost function for collaborative fil- tering