Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update 0.10.0 docs & refactor docs structure #167

Merged
merged 18 commits into from
Nov 7, 2023

Conversation

furiosamg
Copy link
Collaborator

No description provided.

@furiosamg
Copy link
Collaborator Author

/gen-doc

@github-actions
Copy link

Documentation generated by PR-167 successfully!
Documentation commit: 01bfe62
Documentation URL: https://furiosa-ai.github.io/furiosa-models/PR-167/

@furiosamg
Copy link
Collaborator Author

/gen-doc

@github-actions
Copy link

Documentation generated by PR-167 successfully!
Documentation commit: 02c9ef0
Documentation URL: https://furiosa-ai.github.io/furiosa-models/PR-167/

@furiosamg furiosamg force-pushed the update-docs-0.10.0 branch 2 times, most recently from eee198d to 32876b1 Compare August 11, 2023 01:32
@furiosamg
Copy link
Collaborator Author

furiosamg commented Aug 21, 2023

i18n 추가하려고 했는데, mkdocs-jupyter호환이 되지 않는 것 같아 미루려고 합니다.
그리고 구성을 전체적으로 바꾸려고 하는데요 HF 의 문서 구성이 맘에 들어서요 비슷하게 바꾸려고 합니다.
예상 구성

  • GET STARTED provides a quick tour of the library and installation instructions to get up and running.
  • TUTORIALS are a great place to start if you’re a beginner. This section will help you gain the basic skills you need to start using the library.
  • HOW-TO GUIDES show you how to achieve a specific goal, like finetuning a pretrained model for language modeling or how to write and share a custom model.
  • ADVANCED 모델, 전후처리 구조, rust postprocess 등에 대해서 더 설명
  • MODELS
    • 모델 리스트
  • API describes all classes and functions:
    • API 문서

@furiosamg
Copy link
Collaborator Author

/gen-doc

@furiosamg furiosamg changed the title Update 0.10.0 docs & add i18n support Update 0.10.0 docs & reconstruct docs structure Aug 21, 2023
@github-actions
Copy link

Documentation generated by PR-167 successfully!
Documentation commit: 3fbfb53
Documentation URL: https://furiosa-ai.github.io/furiosa-models/PR-167/

@furiosamg
Copy link
Collaborator Author

/gen-doc

@github-actions
Copy link

Documentation generated by PR-167 successfully!
Documentation commit: e616eea
Documentation URL: https://furiosa-ai.github.io/furiosa-models/PR-167/

@ileixe
Copy link
Contributor

ileixe commented Aug 23, 2023

/gen-doc

@github-actions
Copy link

Documentation generated by PR-167 successfully!
Documentation commit: 6d7277d
Documentation URL: https://furiosa-ai.github.io/furiosa-models/PR-167/

hyeonu-furiosa and others added 5 commits August 24, 2023 16:24
Signed-off-by: Myeong-geun Shin <mg.shin@furiosa.ai>
Signed-off-by: Myeong-geun Shin <mg.shin@furiosa.ai>
Signed-off-by: Myeong-geun Shin <mg.shin@furiosa.ai>
@furiosamg
Copy link
Collaborator Author

/gen-doc

@github-actions
Copy link

Documentation generated by PR-167 successfully!
Documentation commit: 6d5d6fb
Documentation URL: https://furiosa-ai.github.io/furiosa-models/PR-167/

@furiosa-infra
Copy link
Contributor

Pip freeze result for all

pip freeze result
aiobotocore==2.5.4
aiofiles==23.2.1
aiohttp==3.8.5
aiohttp-retry==2.8.3
aioitertools==0.11.0
aiosignal==1.3.1
amqp==5.1.1
annotated-types==0.5.0
antlr4-python3-runtime==4.9.3
appdirs==1.4.4
asttokens==2.4.0
async-timeout==4.0.3
asyncssh==2.13.2
atpublic==4.0
attrs==23.1.0
backcall==0.2.0
billiard==4.1.0
boto3==1.28.17
botocore==1.31.17
celery==5.3.4
certifi==2023.7.22
cffi==1.15.1
charset-normalizer==3.2.0
click==8.1.7
click-didyoumean==0.3.0
click-plugins==1.1.1
click-repl==0.3.0
cmake==3.27.5
colorama==0.4.6
comm==0.1.4
configobj==5.0.8
contourpy==1.1.1
cryptography==41.0.4
cycler==0.11.0
Cython==3.0.2
debugpy==1.8.0
decorator==5.1.1
dictdiffer==0.9.0
diskcache==5.6.3
distro==1.8.0
dpath==2.1.6
dulwich==0.21.6
dvc==3.22.1
dvc-data==2.16.3
dvc-http==2.30.2
dvc-objects==1.0.1
dvc-render==0.6.0
dvc-s3==2.23.0
dvc-studio-client==0.15.0
dvc-task==0.3.0
exceptiongroup==1.1.3
executing==1.2.0
fastjsonschema==2.18.0
filelock==3.12.4
flatten-dict==0.4.2
flufl.lock==7.1.1
fonttools==4.42.1
frozenlist==1.4.0
fsspec==2023.9.2
funcy==2.0
furiosa-common==0.10.0
furiosa-models @ file:///app
furiosa-native-postprocess==0.9.0.dev0
furiosa-native-runtime==0.10.1
furiosa-quantizer==0.10.0
furiosa-quantizer-impl==0.10.0
furiosa-runtime==0.10.0
furiosa-tools==0.10.0
gitdb==4.0.10
GitPython==3.1.37
grandalf==0.8
hydra-core==1.3.2
idna==3.4
importlib-metadata==6.8.0
importlib-resources==6.1.0
iniconfig==2.0.0
ipykernel==6.25.2
ipython==8.15.0
iterative-telemetry==0.0.8
jedi==0.19.0
Jinja2==3.1.2
jmespath==1.0.1
jsonschema==4.19.1
jsonschema-specifications==2023.7.1
jupyter_client==8.3.1
jupyter_core==5.3.1
kiwisolver==1.4.5
kombu==5.3.2
lit==17.0.0rc4
markdown-it-py==3.0.0
MarkupSafe==2.1.3
matplotlib==3.8.0
matplotlib-inline==0.1.6
mdurl==0.1.2
mpmath==1.3.0
multidict==6.0.4
multipledispatch==1.0.0
nbclient==0.6.8
nbformat==5.9.2
nbmake==1.4.3
nest-asyncio==1.5.8
networkx==3.1
numpy==1.25.2
nvidia-cublas-cu11==11.10.3.66
nvidia-cuda-cupti-cu11==11.7.101
nvidia-cuda-nvrtc-cu11==11.7.99
nvidia-cuda-runtime-cu11==11.7.99
nvidia-cudnn-cu11==8.5.0.96
nvidia-cufft-cu11==10.9.0.58
nvidia-curand-cu11==10.2.10.91
nvidia-cusolver-cu11==11.4.0.1
nvidia-cusparse-cu11==11.7.4.91
nvidia-nccl-cu11==2.14.3
nvidia-nvtx-cu11==11.7.91
omegaconf==2.3.0
onnx==1.14.1
opencv-python-headless==4.8.0.76
orjson==3.9.7
packaging==23.1
pandas==2.0.3
parso==0.8.3
pathspec==0.11.2
pexpect==4.8.0
pickleshare==0.7.5
Pillow==10.0.1
platformdirs==3.10.0
pluggy==1.3.0
prompt-toolkit==3.0.39
protobuf==4.24.3
psutil==5.9.5
ptyprocess==0.7.0
pure-eval==0.2.2
py-cpuinfo==9.0.0
pyarrow==12.0.1
pycocotools==2.0.7
pycparser==2.21
pydantic==2.3.0
pydantic_core==2.6.3
pydot==1.4.2
pygit2==1.13.1
Pygments==2.16.1
pygtrie==2.5.0
pyparsing==3.1.1
pytest==7.4.2
pytest-asyncio==0.17.2
pytest-benchmark==4.0.0
python-dateutil==2.8.2
pytz==2023.3.post1
PyYAML==6.0.1
pyzmq==25.1.1
referencing==0.30.2
requests==2.31.0
rich==13.5.3
rpds-py==0.10.3
ruamel.yaml==0.17.32
ruamel.yaml.clib==0.2.7
s3fs==2023.9.2
s3transfer==0.6.2
scmrepo==1.3.1
shortuuid==1.0.11
shtab==1.6.4
six==1.16.0
smmap==5.0.1
sqltrie==0.7.0
stack-data==0.6.2
sympy==1.12
tabulate==0.9.0
tomli==2.0.1
tomlkit==0.12.1
torch==2.0.1
torchvision==0.15.2
tornado==6.3.3
tqdm==4.66.1
traitlets==5.10.0
triton==2.0.0
typing_extensions==4.8.0
tzdata==2023.3
urllib3==1.26.16
vine==5.0.0
voluptuous==0.13.1
wcwidth==0.2.6
wrapt==1.15.0
yarl==1.9.2
zc.lockfile==3.0.post1
zipp==3.17.0

@furiosa-infra
Copy link
Contributor

add3e67 nits: import early, packaging stuffs correctly


---------------------------------------------------------------------------------------------------------- benchmark: 9 tests ---------------------------------------------------------------------------------------------------------
Name (time in ms)                                                  Min                   Max                Mean             StdDev              Median                 IQR            Outliers       OPS            Rounds  Iterations
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_mlcommons_resnet50_accuracy                                1.5000 (1.0)         63.0499 (1.43)       7.6127 (1.0)       5.9274 (1.57)       5.4743 (1.0)        2.1434 (1.75)    5725;7380  131.3587 (1.0)       50000           1
test_efficientnetb0_accuracy                                    4.9034 (3.27)       317.2269 (7.20)      13.0868 (1.72)      7.0704 (1.87)      12.3864 (2.26)       2.2392 (1.83)    1077;2899   76.4128 (0.58)      50000           1
test_mlcommons_ssd_mobilenet_with_native_rust_pp_accuracy       6.0923 (4.06)        44.0522 (1.0)       12.4073 (1.63)      5.2489 (1.39)       9.6013 (1.75)       5.3920 (4.40)      788;324   80.5976 (0.61)       5000           1
test_efficientnetv2s_accuracy                                   7.1539 (4.77)       256.9700 (5.83)      15.2360 (2.00)      6.8004 (1.80)      14.6593 (2.68)       2.6217 (2.14)    1002;1531   65.6341 (0.50)      50000           1
test_mlcommons_ssd_mobilenet_accuracy                           7.3518 (4.90)       240.3726 (5.46)      11.1492 (1.46)      3.7776 (1.0)       10.6000 (1.94)       1.2245 (1.0)       468;673   89.6923 (0.68)       5000           1
test_yolov5m_accuracy                                           8.9905 (5.99)       778.9908 (17.68)     17.0584 (2.24)     14.1673 (3.75)      13.2752 (2.43)       6.0691 (4.96)     723;1142   58.6222 (0.45)      10000           1
test_yolov5l_accuracy                                          11.8736 (7.92)       188.9924 (4.29)      16.5485 (2.17)      7.1420 (1.89)      15.2527 (2.79)       3.1159 (2.54)      222;383   60.4284 (0.46)      10000           1
test_mlcommons_ssd_resnet34_with_native_rust_pp_accuracy       42.3397 (28.23)      727.7901 (16.52)     51.2738 (6.74)     15.5134 (4.11)      50.7233 (9.27)       1.9495 (1.59)        6;205   19.5031 (0.15)       5000           1
test_mlcommons_ssd_resnet34_accuracy                          104.9737 (69.98)    1,395.5332 (31.68)    285.7867 (37.54)    99.7738 (26.41)    286.5471 (52.34)    104.1625 (85.06)     997;231    3.4991 (0.03)       5000           1
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Legend:
  Outliers: 1 Standard Deviation from Mean; 1.5 IQR (InterQuartile Range) from 1st Quartile and 3rd Quartile.
  OPS: Operations Per Second, computed as 1 / Mean

@furiosa-infra
Copy link
Contributor

Pip freeze result for all

pip freeze result
aiobotocore==2.5.4
aiofiles==23.2.1
aiohttp==3.8.5
aiohttp-retry==2.8.3
aioitertools==0.11.0
aiosignal==1.3.1
amqp==5.1.1
annotated-types==0.5.0
antlr4-python3-runtime==4.9.3
appdirs==1.4.4
asttokens==2.4.0
async-timeout==4.0.3
asyncssh==2.13.2
atpublic==4.0
attrs==23.1.0
backcall==0.2.0
billiard==4.1.0
boto3==1.28.17
botocore==1.31.17
celery==5.3.4
certifi==2023.7.22
cffi==1.15.1
charset-normalizer==3.2.0
click==8.1.7
click-didyoumean==0.3.0
click-plugins==1.1.1
click-repl==0.3.0
cmake==3.27.5
colorama==0.4.6
comm==0.1.4
configobj==5.0.8
contourpy==1.1.1
cryptography==41.0.4
cycler==0.11.0
Cython==3.0.2
debugpy==1.8.0
decorator==5.1.1
dictdiffer==0.9.0
diskcache==5.6.3
distro==1.8.0
dpath==2.1.6
dulwich==0.21.6
dvc==3.22.1
dvc-data==2.16.3
dvc-http==2.30.2
dvc-objects==1.0.1
dvc-render==0.6.0
dvc-s3==2.23.0
dvc-studio-client==0.15.0
dvc-task==0.3.0
exceptiongroup==1.1.3
executing==1.2.0
fastjsonschema==2.18.0
filelock==3.12.4
flatten-dict==0.4.2
flufl.lock==7.1.1
fonttools==4.42.1
frozenlist==1.4.0
fsspec==2023.9.2
funcy==2.0
furiosa-common==0.10.0
furiosa-models @ file:///app
furiosa-native-postprocess==0.9.0.dev0
furiosa-native-runtime==0.10.1
furiosa-quantizer==0.10.0
furiosa-quantizer-impl==0.10.0
furiosa-runtime==0.10.0
furiosa-tools==0.10.0
gitdb==4.0.10
GitPython==3.1.37
grandalf==0.8
hydra-core==1.3.2
idna==3.4
importlib-metadata==6.8.0
importlib-resources==6.1.0
iniconfig==2.0.0
ipykernel==6.25.2
ipython==8.15.0
iterative-telemetry==0.0.8
jedi==0.19.0
Jinja2==3.1.2
jmespath==1.0.1
jsonschema==4.19.1
jsonschema-specifications==2023.7.1
jupyter_client==8.3.1
jupyter_core==5.3.1
kiwisolver==1.4.5
kombu==5.3.2
lit==17.0.0rc4
markdown-it-py==3.0.0
MarkupSafe==2.1.3
matplotlib==3.8.0
matplotlib-inline==0.1.6
mdurl==0.1.2
mpmath==1.3.0
multidict==6.0.4
multipledispatch==1.0.0
nbclient==0.6.8
nbformat==5.9.2
nbmake==1.4.3
nest-asyncio==1.5.8
networkx==3.1
numpy==1.25.2
nvidia-cublas-cu11==11.10.3.66
nvidia-cuda-cupti-cu11==11.7.101
nvidia-cuda-nvrtc-cu11==11.7.99
nvidia-cuda-runtime-cu11==11.7.99
nvidia-cudnn-cu11==8.5.0.96
nvidia-cufft-cu11==10.9.0.58
nvidia-curand-cu11==10.2.10.91
nvidia-cusolver-cu11==11.4.0.1
nvidia-cusparse-cu11==11.7.4.91
nvidia-nccl-cu11==2.14.3
nvidia-nvtx-cu11==11.7.91
omegaconf==2.3.0
onnx==1.14.1
opencv-python-headless==4.8.0.76
orjson==3.9.7
packaging==23.1
pandas==2.0.3
parso==0.8.3
pathspec==0.11.2
pexpect==4.8.0
pickleshare==0.7.5
Pillow==10.0.1
platformdirs==3.10.0
pluggy==1.3.0
prompt-toolkit==3.0.39
protobuf==4.24.3
psutil==5.9.5
ptyprocess==0.7.0
pure-eval==0.2.2
py-cpuinfo==9.0.0
pyarrow==12.0.1
pycocotools==2.0.7
pycparser==2.21
pydantic==2.3.0
pydantic_core==2.6.3
pydot==1.4.2
pygit2==1.13.1
Pygments==2.16.1
pygtrie==2.5.0
pyparsing==3.1.1
pytest==7.4.2
pytest-asyncio==0.17.2
pytest-benchmark==4.0.0
python-dateutil==2.8.2
pytz==2023.3.post1
PyYAML==6.0.1
pyzmq==25.1.1
referencing==0.30.2
requests==2.31.0
rich==13.5.3
rpds-py==0.10.3
ruamel.yaml==0.17.32
ruamel.yaml.clib==0.2.7
s3fs==2023.9.2
s3transfer==0.6.2
scmrepo==1.3.1
shortuuid==1.0.11
shtab==1.6.4
six==1.16.0
smmap==5.0.1
sqltrie==0.7.0
stack-data==0.6.2
sympy==1.12
tabulate==0.9.0
tomli==2.0.1
tomlkit==0.12.1
torch==2.0.1
torchvision==0.15.2
tornado==6.3.3
tqdm==4.66.1
traitlets==5.10.0
triton==2.0.0
typing_extensions==4.8.0
tzdata==2023.3
urllib3==1.26.16
vine==5.0.0
voluptuous==0.13.1
wcwidth==0.2.6
wrapt==1.15.0
yarl==1.9.2
zc.lockfile==3.0.post1
zipp==3.17.0

@furiosa-infra
Copy link
Contributor

add3e67 nits: import early, packaging stuffs correctly


---------------------------------------------------------------------------------------------------------- benchmark: 9 tests ----------------------------------------------------------------------------------------------------------
Name (time in ms)                                                  Min                   Max                Mean              StdDev              Median                 IQR            Outliers       OPS            Rounds  Iterations
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_mlcommons_resnet50_accuracy                                1.5226 (1.0)        522.3129 (11.06)      7.7945 (1.0)        5.9932 (1.63)       5.6116 (1.0)        3.0819 (2.63)    5627;6682  128.2956 (1.0)       50000           1
test_efficientnetb0_accuracy                                    4.9407 (3.24)       506.6570 (10.73)     13.1749 (1.69)       8.5187 (2.31)      12.3566 (2.20)       2.2876 (1.95)     908;2818   75.9019 (0.59)      50000           1
test_mlcommons_ssd_mobilenet_with_native_rust_pp_accuracy       5.6869 (3.73)        47.2054 (1.0)       12.2406 (1.57)       5.3866 (1.46)       9.4710 (1.69)       5.3932 (4.61)      805;328   81.6955 (0.64)       5000           1
test_mlcommons_ssd_mobilenet_accuracy                           7.1537 (4.70)       231.5826 (4.91)      11.3956 (1.46)       3.6834 (1.0)       10.7673 (1.92)       1.1703 (1.0)       523;776   87.7534 (0.68)       5000           1
test_efficientnetv2s_accuracy                                   7.4129 (4.87)       248.7642 (5.27)      14.9867 (1.92)       6.6797 (1.81)      14.3991 (2.57)       2.5243 (2.16)     948;1585   66.7260 (0.52)      50000           1
test_yolov5m_accuracy                                           9.1483 (6.01)       569.9067 (12.07)     17.1893 (2.21)      12.5290 (3.40)      13.6183 (2.43)       6.0402 (5.16)     839;1117   58.1757 (0.45)      10000           1
test_yolov5l_accuracy                                          12.0862 (7.94)       358.1844 (7.59)      16.6039 (2.13)       8.0943 (2.20)      15.3607 (2.74)       3.1162 (2.66)      143;319   60.2269 (0.47)      10000           1
test_mlcommons_ssd_resnet34_with_native_rust_pp_accuracy       39.2998 (25.81)    1,104.6358 (23.40)     50.6261 (6.50)      17.4529 (4.74)      50.4396 (8.99)       2.2129 (1.89)        6;443   19.7526 (0.15)       5000           1
test_mlcommons_ssd_resnet34_accuracy                          109.6047 (71.98)    1,522.3957 (32.25)    291.1836 (37.36)    111.6781 (30.32)    288.4513 (51.40)    105.2393 (89.92)     535;245    3.4343 (0.03)       5000           1
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Legend:
  Outliers: 1 Standard Deviation from Mean; 1.5 IQR (InterQuartile Range) from 1st Quartile and 3rd Quartile.
  OPS: Operations Per Second, computed as 1 / Mean

@furiosamg
Copy link
Collaborator Author

/gen-doc

@github-actions
Copy link

Documentation generated by PR-167 successfully!
Documentation commit: ec86801
Documentation URL: https://furiosa-ai.github.io/furiosa-models/PR-167/

@furiosamg furiosamg requested a review from hyunsik October 28, 2023 09:15
@furiosamg furiosamg marked this pull request as ready for review October 28, 2023 09:15
Copy link
Member

@hyunsik hyunsik left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

quantize_and_compile_model.ipynb seems to need a brief description of this example. It's hard to understand how the quantization and model zoo is related to each other. Also, it would be great if you add links to the quantization section of SDK doc.

@@ -0,0 +1,5 @@
# Serving Example with furiosa-serving

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It seems to need at least a brief description. Also, it would be great if you add how to use furiosa-serving and its links.

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Add detailed page at 2bcdaf8


- [Furiosa SDK - furiosa.runtime API Reference](https://furiosa-ai.github.io/docs/latest/en/api/python/furiosa.runtime.html)
- [Furiosa SDK - furiosa.runtime.sync.create_runner Reference](https://furiosa-ai.github.io/docs/latest/en/api/python/furiosa.runtime.html#furiosa.runtime.sync.Runtime)
- [Furiosa SDK - Tutorial and Code Examples](https://furiosa-ai.github.io/docs/latest/en/software/tutorials.html).
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This update was necessary. This part looks great.

In addition, a `Model` object has various metadata. The followings are all attributes belonging to a single `Model` object.
A Model object encompasses model artifacts, such as ONNX, TFLite, mapping from a tensor name to the tensor's min and max, and ENF.

The ENF format is specific to the FuriosaAI Compiler.
Copy link
Member

@hyunsik hyunsik Oct 31, 2023

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Most users would be not familiar with ENF. So, I've added a little bit more description for ENF.

Suggested change
The ENF format is specific to the FuriosaAI Compiler.
ENF is the serialization format of a compiled binary used in Furiosa SDK.

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Applied in f771d98


## Inferencing with Session API
To create a Runner, pass the ENF binary obtained from the `model_source()` method of the model object to the `furiosa.runtime.sync.create_runner` function. If you prefer an asynchronous Runner, you can use the `furiosa.runtime.create_runner` function instead. Passing the pre-compiled ENF binary allows you to perform inference directly without the compilation process. Alternatively, you can also manually quantize and compile the original f32 model with the provided calibration range.
Copy link
Member

@hyunsik hyunsik Oct 31, 2023

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is not a part that you changed. I revised this part to be more kind.

Suggested change
To create a Runner, pass the ENF binary obtained from the `model_source()` method of the model object to the `furiosa.runtime.sync.create_runner` function. If you prefer an asynchronous Runner, you can use the `furiosa.runtime.create_runner` function instead. Passing the pre-compiled ENF binary allows you to perform inference directly without the compilation process. Alternatively, you can also manually quantize and compile the original f32 model with the provided calibration range.
To create a Runner, you need to pass the ENF binary obtained from the `model_source()` method of the model object to the `furiosa.runtime.sync.create_runner` function. If you prefer an asynchronous Runner, you can use the `furiosa.runtime.create_runner` function instead. Passing the pre-compiled ENF binary allows you to perform inference directly without the compilation process. Alternatively, you can also manually quantize and compile the original f32 model with the provided calibration range.

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Applied in f771d98

At this stage, the compiler configuration can be specified.
To work with f32 source models, calibration and quantization are essential steps.
You can access pre-calibrated data directly from furiosa-models, simplifying the quantization process.
If you prefer manual quantization of the model, you can install the `furiosa-quantizer` package, available at this [package link](https://furiosa-ai.github.io/docs/latest/en/software/python-sdk.html#quantizer).
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
If you prefer manual quantization of the model, you can install the `furiosa-quantizer` package, available at this [package link](https://furiosa-ai.github.io/docs/latest/en/software/python-sdk.html#quantizer).
If you prefer a manual quantization step for a model, you can install the `furiosa-quantizer` package, available at this [package link](https://furiosa-ai.github.io/docs/latest/en/software/python-sdk.html#quantizer).

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Applied in f771d98

@furiosamg
Copy link
Collaborator Author

/gen-doc

Copy link

github-actions bot commented Nov 2, 2023

Documentation generated by PR-167 successfully!
Documentation commit: e6214c4
Documentation URL: https://furiosa-ai.github.io/furiosa-models/PR-167/

@furiosamg
Copy link
Collaborator Author

@hyunsik 리뷰 주신 부분들 반영했습니다. quantize & compile 문서도 더 적었습니다!

@furiosamg furiosamg changed the title Update 0.10.0 docs & reconstruct docs structure Update 0.10.0 docs & refactor docs structure Nov 6, 2023
Copy link
Collaborator

@libc-furiosa libc-furiosa left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

수고하셨습니다. 커멘트 하나 남겼는데 이것만 확인 부탁드립니다.

README.md Outdated
* [Furiosa SDK - Tutorial and Code Examples](https://furiosa-ai.github.io/docs/latest/en/software/tutorials.html)
* [Model object](https://furiosa-ai.github.io/furiosa-models/v0.10.0/model_object/)
* [Model List](https://furiosa-ai.github.io/furiosa-models/v0.10.0/#model_list)
* [Command Tool](https://furiosa-ai.github.io/furiosa-models/v0.10.0/command_line_tool/)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

링크도 Command Line Tool로 변경해야할 것 같습니다.

Suggested change
* [Command Tool](https://furiosa-ai.github.io/furiosa-models/v0.10.0/command_line_tool/)
* [Command Line Tool](https://furiosa-ai.github.io/furiosa-models/v0.10.0/command_line_tool/)

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

감사합니다 c1aca86 에서 반영했습니다!

@furiosamg
Copy link
Collaborator Author

/gen-doc

Copy link

github-actions bot commented Nov 6, 2023

Documentation generated by PR-167 successfully!
Documentation commit: 429c0c0
Documentation URL: https://furiosa-ai.github.io/furiosa-models/PR-167/

Copy link
Member

@hyunsik hyunsik left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

수고 많으셨습니다. publish 해도 좋을 것 같습니다.

@furiosamg furiosamg merged commit 1e7fe21 into furiosa-ai:main Nov 7, 2023
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

6 participants