This repository has been archived by the owner on Oct 19, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 244
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
23 changed files
with
1,788 additions
and
383 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
# 딥러닝과 파이토치 | ||
|
||
딥러닝의 기본 지식을 쌓고 파이토치의 장단점에 대해 알아봅니다. | ||
|
||
* [개념] 신경망의 원리 | ||
* [개념] 딥러닝과 신경망 | ||
* [개념] 왜 파이토치인가? |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
# 파이토치 시작하기 | ||
|
||
파이토치 환경설정과 사용법을 익혀봅니다 | ||
|
||
* [프로젝트 1] 파이토치 설치 & 환경구성 | ||
* [프로젝트 2] 파이토치 예제 내려받고 실행해보기 | ||
* [프로젝트 3] 토치비전과 토치텍스트로 데이터셋 불러오기 |
File renamed without changes.
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
# 파이토치로 구현하는 신경망 | ||
|
||
파이토치를 이용하여 가장 기본적인 신경망을 만들어봅니다. | ||
|
||
* [개념] 텐서와 Autograd | ||
* [Hello World] 신경망 모델 구현하기 | ||
* [Hello World] 모델 저장, 재사용 |
File renamed without changes.
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
|
||
# coding: utf-8 | ||
|
||
# # 4.1 Fashion MNIST 데이터셋 알아보기 | ||
|
||
get_ipython().run_line_magic('matplotlib', 'inline') | ||
from torchvision import datasets, transforms, utils | ||
from torch.utils import data | ||
|
||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
|
||
|
||
# ## [개념] Fashion MNIST 데이터셋 설명 | ||
|
||
transform = transforms.Compose([ | ||
transforms.ToTensor() | ||
]) | ||
|
||
|
||
trainset = datasets.FashionMNIST( | ||
root = './.data/', | ||
train = True, | ||
download = True, | ||
transform = transform | ||
) | ||
testset = datasets.FashionMNIST( | ||
root = './.data/', | ||
train = False, | ||
download = True, | ||
transform = transform | ||
) | ||
|
||
|
||
batch_size = 16 | ||
|
||
train_loader = data.DataLoader( | ||
dataset = trainset, | ||
batch_size = batch_size, | ||
shuffle = True, | ||
num_workers = 2 | ||
) | ||
test_loader = data.DataLoader( | ||
dataset = testset, | ||
batch_size = batch_size, | ||
shuffle = True, | ||
num_workers = 2 | ||
) | ||
|
||
|
||
dataiter = iter(train_loader) | ||
images, labels = next(dataiter) | ||
|
||
|
||
# ## 멀리서 살펴보기 | ||
# 누군가 "숲을 먼저 보고 나무를 보라"고 했습니다. 데이터셋을 먼저 전체적으로 살펴보며 어떤 느낌인지 알아보겠습니다. | ||
|
||
img = utils.make_grid(images, padding=0) | ||
npimg = img.numpy() | ||
plt.figure(figsize=(10, 7)) | ||
plt.imshow(np.transpose(npimg, (1,2,0))) | ||
plt.show() | ||
|
||
|
||
CLASSES = { | ||
0: 'T-shirt/top', | ||
1: 'Trouser', | ||
2: 'Pullover', | ||
3: 'Dress', | ||
4: 'Coat', | ||
5: 'Sandal', | ||
6: 'Shirt', | ||
7: 'Sneaker', | ||
8: 'Bag', | ||
9: 'Ankle boot' | ||
} | ||
|
||
KR_CLASSES = { | ||
0: '티셔츠', | ||
1: '바지', | ||
2: '스웨터', | ||
3: '드레스', | ||
4: '코트', | ||
5: '샌들', | ||
6: '셔츠', | ||
7: '운동화', | ||
8: '가방', | ||
9: '앵클부츠' | ||
} | ||
|
||
for label in labels: | ||
index = label.item() | ||
print(KR_CLASSES[index]) | ||
|
||
|
||
# ## 가까이서 살펴보기 | ||
# 또 누군가는 "숲만 보지 말고 나무를 보라"고 합니다. 이제 전체적인 느낌을 알았으니 개별적으로 살펴보겠습니다. | ||
|
||
idx = 0 | ||
|
||
item_img = images[idx] | ||
item_npimg = img.squeeze().numpy() | ||
plt.title(CLASSES[labels[idx].item()]) | ||
plt.imshow(item_npimg, cmap='gray') | ||
plt.show() | ||
|
||
|
||
img.size() | ||
|
||
|
||
img.max() | ||
|
||
|
||
img.min() | ||
|
||
|
||
img | ||
|
Oops, something went wrong.