Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Wip: ltx-video support #491

Draft
wants to merge 2 commits into
base: master
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
167 changes: 167 additions & 0 deletions conditioner.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -1190,4 +1190,171 @@ struct FluxCLIPEmbedder : public Conditioner {
}
};

struct SimpleT5Embedder : public Conditioner {
T5UniGramTokenizer t5_tokenizer;
std::shared_ptr<T5Runner> t5;

SimpleT5Embedder(ggml_backend_t backend,
std::map<std::string, enum ggml_type>& tensor_types,
int clip_skip = -1) {
t5 = std::make_shared<T5Runner>(backend, tensor_types, "text_encoders.t5xxl.transformer");
}

void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) {
t5->get_param_tensors(tensors, "text_encoders.t5xxl.transformer");
}

void alloc_params_buffer() {
t5->alloc_params_buffer();
}

void free_params_buffer() {
t5->free_params_buffer();
}

size_t get_params_buffer_size() {
size_t buffer_size = t5->get_params_buffer_size();
return buffer_size;
}

std::pair<std::vector<int>, std::vector<float>> tokenize(std::string text,
size_t max_length = 0,
bool padding = false) {
auto parsed_attention = parse_prompt_attention(text);

{
std::stringstream ss;
ss << "[";
for (const auto& item : parsed_attention) {
ss << "['" << item.first << "', " << item.second << "], ";
}
ss << "]";
LOG_DEBUG("parse '%s' to %s", text.c_str(), ss.str().c_str());
}

auto on_new_token_cb = [&](std::string& str, std::vector<int32_t>& bpe_tokens) -> bool {
return false;
};

std::vector<int> t5_tokens;
std::vector<float> t5_weights;
for (const auto& item : parsed_attention) {
const std::string& curr_text = item.first;
float curr_weight = item.second;

std::vector<int> curr_tokens = t5_tokenizer.Encode(curr_text, true);
t5_tokens.insert(t5_tokens.end(), curr_tokens.begin(), curr_tokens.end());
t5_weights.insert(t5_weights.end(), curr_tokens.size(), curr_weight);
}

t5_tokenizer.pad_tokens(t5_tokens, t5_weights, max_length, padding);

// for (int i = 0; i < clip_l_tokens.size(); i++) {
// std::cout << clip_l_tokens[i] << ":" << clip_l_weights[i] << ", ";
// }
// std::cout << std::endl;

// for (int i = 0; i < t5_tokens.size(); i++) {
// std::cout << t5_tokens[i] << ":" << t5_weights[i] << ", ";
// }
// std::cout << std::endl;

return {t5_tokens, t5_weights};
}

SDCondition get_learned_condition_common(ggml_context* work_ctx,
int n_threads,
std::pair<std::vector<int>, std::vector<float>> token_and_weights,
int clip_skip,
bool force_zero_embeddings = false) {
auto& t5_tokens = token_and_weights.first;
auto& t5_weights = token_and_weights.second;

int64_t t0 = ggml_time_ms();
struct ggml_tensor* hidden_states = NULL; // [N, n_token, 4096]
struct ggml_tensor* chunk_hidden_states = NULL; // [n_token, 4096]
std::vector<float> hidden_states_vec;

size_t chunk_len = 256;
size_t chunk_count = t5_tokens.size() / chunk_len;
for (int chunk_idx = 0; chunk_idx < chunk_count; chunk_idx++) {
std::vector<int> chunk_tokens(t5_tokens.begin() + chunk_idx * chunk_len,
t5_tokens.begin() + (chunk_idx + 1) * chunk_len);
std::vector<float> chunk_weights(t5_weights.begin() + chunk_idx * chunk_len,
t5_weights.begin() + (chunk_idx + 1) * chunk_len);

auto input_ids = vector_to_ggml_tensor_i32(work_ctx, chunk_tokens);

t5->compute(n_threads,
input_ids,
&chunk_hidden_states,
work_ctx);
{
auto tensor = chunk_hidden_states;
float original_mean = ggml_tensor_mean(tensor);
for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
float value = ggml_tensor_get_f32(tensor, i0, i1, i2);
value *= chunk_weights[i1];
ggml_tensor_set_f32(tensor, value, i0, i1, i2);
}
}
}
float new_mean = ggml_tensor_mean(tensor);
ggml_tensor_scale(tensor, (original_mean / new_mean));
}

int64_t t1 = ggml_time_ms();
LOG_DEBUG("computing condition graph completed, taking %" PRId64 " ms", t1 - t0);
if (force_zero_embeddings) {
float* vec = (float*)chunk_hidden_states->data;
for (int i = 0; i < ggml_nelements(chunk_hidden_states); i++) {
vec[i] = 0;
}
}

hidden_states_vec.insert(hidden_states_vec.end(),
(float*)chunk_hidden_states->data,
((float*)chunk_hidden_states->data) + ggml_nelements(chunk_hidden_states));
}

hidden_states = vector_to_ggml_tensor(work_ctx, hidden_states_vec);
hidden_states = ggml_reshape_2d(work_ctx,
hidden_states,
chunk_hidden_states->ne[0],
ggml_nelements(hidden_states) / chunk_hidden_states->ne[0]);
return SDCondition(hidden_states, NULL, NULL);
}

SDCondition get_learned_condition(ggml_context* work_ctx,
int n_threads,
const std::string& text,
int clip_skip,
int width,
int height,
int adm_in_channels = -1,
bool force_zero_embeddings = false) {
auto tokens_and_weights = tokenize(text, 256, true);
return get_learned_condition_common(work_ctx, n_threads, tokens_and_weights, clip_skip, force_zero_embeddings);
}

std::tuple<SDCondition, std::vector<bool>> get_learned_condition_with_trigger(ggml_context* work_ctx,
int n_threads,
const std::string& text,
int clip_skip,
int width,
int height,
int num_input_imgs,
int adm_in_channels = -1,
bool force_zero_embeddings = false) {
GGML_ASSERT(0 && "Not implemented yet!");
}

std::string remove_trigger_from_prompt(ggml_context* work_ctx,
const std::string& prompt) {
GGML_ASSERT(0 && "Not implemented yet!");
}
};

#endif
51 changes: 51 additions & 0 deletions diffusion_model.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
#define __DIFFUSION_MODEL_H__

#include "flux.hpp"
#include "ltx.hpp"
#include "mmdit.hpp"
#include "unet.hpp"

Expand Down Expand Up @@ -178,4 +179,54 @@ struct FluxModel : public DiffusionModel {
}
};

struct LTXModel : public DiffusionModel {
Ltx::LTXRunner ltx;

LTXModel(ggml_backend_t backend,
std::map<std::string, enum ggml_type>& tensor_types,
bool flash_attn = false)
: ltx(backend, tensor_types, "model.diffusion_model") {
}

void alloc_params_buffer() {
ltx.alloc_params_buffer();
}

void free_params_buffer() {
ltx.free_params_buffer();
}

void free_compute_buffer() {
ltx.free_compute_buffer();
}

void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) {
ltx.get_param_tensors(tensors, "model.diffusion_model");
}

size_t get_params_buffer_size() {
return ltx.get_params_buffer_size();
}

int64_t get_adm_in_channels() {
return 768;
}

void compute(int n_threads,
struct ggml_tensor* x,
struct ggml_tensor* timesteps,
struct ggml_tensor* context,
struct ggml_tensor* c_concat,
struct ggml_tensor* y,
struct ggml_tensor* guidance,
int num_video_frames = -1,
std::vector<struct ggml_tensor*> controls = {},
float control_strength = 0.f,
struct ggml_tensor** output = NULL,
struct ggml_context* output_ctx = NULL,
std::vector<int> skip_layers = std::vector<int>()) {
return ltx.compute(n_threads, x, timesteps, context, y, output, output_ctx, skip_layers);
}
};

#endif
21 changes: 20 additions & 1 deletion examples/cli/main.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -54,13 +54,15 @@ const char* schedule_str[] = {
const char* modes_str[] = {
"txt2img",
"img2img",
"txt2vid",
"img2vid",
"convert",
};

enum SDMode {
TXT2IMG,
IMG2IMG,
TXT2VID,
IMG2VID,
CONVERT,
MODE_COUNT
Expand Down Expand Up @@ -264,7 +266,7 @@ void parse_args(int argc, const char** argv, SDParams& params) {
}
if (mode_found == -1) {
fprintf(stderr,
"error: invalid mode %s, must be one of [txt2img, img2img, img2vid, convert]\n",
"error: invalid mode %s, must be one of [txt2img, img2img, txt2vid, img2vid, convert]\n",
mode_selected);
exit(1);
}
Expand Down Expand Up @@ -931,6 +933,23 @@ int main(int argc, const char* argv[]) {
params.slg_scale,
params.skip_layer_start,
params.skip_layer_end);
} else if (params.mode == TXT2VID) {
results = txt2vid(sd_ctx,
params.prompt.c_str(),
params.negative_prompt.c_str(),
params.clip_skip,
params.cfg_scale,
params.width,
params.height,
params.sample_method,
params.sample_steps,
params.seed,
params.batch_count,
params.skip_layers.data(),
params.skip_layers.size(),
params.slg_scale,
params.skip_layer_start,
params.skip_layer_end);
} else {
sd_image_t input_image = {(uint32_t)params.width,
(uint32_t)params.height,
Expand Down
Loading
Loading