forked from NVIDIA/apex
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[transformer] add microbatches test (NVIDIA#1349)
* add test * destroy model parallel was missing
- Loading branch information
Showing
2 changed files
with
81 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
import logging | ||
from typing import List, Optional | ||
|
||
from torch.testing._internal import common_utils | ||
|
||
logging.getLogger("torch").setLevel(logging.WARNING) | ||
|
||
from apex.transformer import parallel_state | ||
from apex.transformer.pipeline_parallel.utils import ( | ||
_reconfigure_microbatch_calculator, | ||
get_micro_batch_size, | ||
get_num_microbatches, | ||
get_current_global_batch_size, | ||
update_num_microbatches, | ||
) | ||
from apex.transformer.testing.distributed_test_base import DistributedTestBase | ||
|
||
logging.getLogger("apex").setLevel(logging.WARNING) | ||
|
||
|
||
class MicrobatchCalculatorTest(DistributedTestBase): | ||
|
||
GLOBAL_BATCH_SIZE: int = 1024 | ||
MICRO_BATCH_SIZE: int = 1 | ||
|
||
def _test(self, rampup_batch_size: Optional[List[int]]) -> None: | ||
for data_parallel_size in range(1, self.world_size + 1): | ||
|
||
expected_global_batch_size = MicrobatchCalculatorTest.GLOBAL_BATCH_SIZE | ||
expected_micro_batch_size = MicrobatchCalculatorTest.MICRO_BATCH_SIZE | ||
if rampup_batch_size: | ||
expected_global_batch_size = rampup_batch_size[0] | ||
num_consumed_samples = 0 | ||
step_of_global_batch_size = rampup_batch_size[1] | ||
threshold = rampup_batch_size[2] | ||
|
||
if data_parallel_size > 1 and data_parallel_size % 2 != 0: | ||
continue | ||
if self.world_size % data_parallel_size != 0: | ||
continue | ||
with self.subTest(data_parallel_size=data_parallel_size): | ||
parallel_state.initialize_model_parallel( | ||
tensor_model_parallel_size_=self.world_size // data_parallel_size, | ||
pipeline_model_parallel_size_=1, | ||
) | ||
self.assertEqual(data_parallel_size, parallel_state.get_data_parallel_world_size()) | ||
|
||
_reconfigure_microbatch_calculator( | ||
self.rank, | ||
rampup_batch_size, | ||
MicrobatchCalculatorTest.GLOBAL_BATCH_SIZE, | ||
MicrobatchCalculatorTest.MICRO_BATCH_SIZE, | ||
data_parallel_size, | ||
) | ||
|
||
self.assertEqual(get_micro_batch_size(), expected_micro_batch_size) | ||
self.assertEqual(get_num_microbatches(), expected_global_batch_size / expected_micro_batch_size / data_parallel_size) | ||
current_global_batch_size = get_current_global_batch_size() | ||
self.assertEqual(current_global_batch_size, expected_global_batch_size) | ||
|
||
# Make sure `global_batch_size` equals to the final global batch size after | ||
# certain number of updates. | ||
if rampup_batch_size: | ||
update_num_microbatches(current_global_batch_size) | ||
for i in range(100): | ||
current_global_batch_size = get_current_global_batch_size() | ||
update_num_microbatches(current_global_batch_size) | ||
current_global_batch_size = get_current_global_batch_size() | ||
self.assertEqual(get_current_global_batch_size(), MicrobatchCalculatorTest.GLOBAL_BATCH_SIZE) | ||
parallel_state.destroy_model_parallel() | ||
|
||
def test_constant_microbatch_calculator(self): | ||
self._test(rampup_batch_size=None) | ||
|
||
def test_dynamic_microbatch_calculator(self): | ||
self._test(rampup_batch_size=[256, 128, 500]) | ||
|
||
|
||
if __name__ == "__main__": | ||
common_utils.run_tests() |