-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
e61e515
commit 8e6c32e
Showing
8 changed files
with
1,251 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
cuda_inc = /opt/cuda/include/ | ||
cuda_lib = /opt/cuda/lib64/ | ||
nvcc = /opt/cuda/bin/nvcc | ||
tf_lib = /home/mmorariu/.local/lib/python3.8/site-packages/tensorflow | ||
tf_inc = $(tf_lib)/include | ||
|
||
all: tf_nndistance_so.so tf_approxmatch_so.so | ||
|
||
tf_nndistance.cu.o: tf_nndistance.cu | ||
$(nvcc) tf_nndistance.cu -o tf_nndistance.cu.o -c -O2 -DGOOGLE_CUDA=1 -x cu -Xcompiler -fPIC | ||
|
||
tf_nndistance_so.so: tf_nndistance.cpp tf_nndistance.cu.o | ||
g++ tf_nndistance.cpp tf_nndistance.cu.o -o tf_nndistance_so.so \ | ||
-I $(cuda_inc) -I $(tf_inc) -L $(cuda_lib) -lcudart -L $(tf_lib)/libtensorflow_framework.so.2 \ | ||
-shared -D_GLIBCXX_USE_CXX11_ABI=0 -std=c++11 -fPIC -O2 | ||
|
||
tf_approxmatch.cu.o: tf_approxmatch.cu | ||
$(nvcc) tf_approxmatch.cu -o tf_approxmatch.cu.o -c -O2 -DGOOGLE_CUDA=1 -x cu -Xcompiler -fPIC | ||
|
||
tf_approxmatch_so.so: tf_approxmatch.cpp tf_approxmatch.cu.o | ||
g++ -shared $(CPPFLAGS) tf_approxmatch.cpp tf_approxmatch.cu.o -o tf_approxmatch_so.so \ | ||
-I $(cuda_inc) -I $(tf_inc) -L $(cuda_lib) -lcudart -L $(tf_lib)/libtensorflow_framework.so.2 \ | ||
-shared -D_GLIBCXX_USE_CXX11_ABI=0 -std=c++11 -fPIC -O2 | ||
|
||
clean: | ||
rm -rf *.o *.so |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,329 @@ | ||
#include "tensorflow/core/framework/op.h" | ||
#include "tensorflow/core/framework/op_kernel.h" | ||
#include <algorithm> | ||
#include <vector> | ||
#include <math.h> | ||
using namespace tensorflow; | ||
REGISTER_OP("ApproxMatch") | ||
.Input("xyz1: float32") | ||
.Input("xyz2: float32") | ||
.Output("match: float32"); | ||
REGISTER_OP("MatchCost") | ||
.Input("xyz1: float32") | ||
.Input("xyz2: float32") | ||
.Input("match: float32") | ||
.Output("cost: float32"); | ||
REGISTER_OP("MatchCostGrad") | ||
.Input("xyz1: float32") | ||
.Input("xyz2: float32") | ||
.Input("match: float32") | ||
.Output("grad1: float32") | ||
.Output("grad2: float32"); | ||
|
||
void approxmatch_cpu(int b,int n,int m,const float * xyz1,const float * xyz2,float * match){ | ||
for (int i=0;i<b;i++){ | ||
int factorl=std::max(n,m)/n; | ||
int factorr=std::max(n,m)/m; | ||
std::vector<double> saturatedl(n,double(factorl)),saturatedr(m,double(factorr)); | ||
std::vector<double> weight(n*m); | ||
for (int j=0;j<n*m;j++) | ||
match[j]=0; | ||
for (int j=8;j>=-2;j--){ | ||
//printf("i=%d j=%d\n",i,j); | ||
double level=-powf(4.0,j); | ||
if (j==-2) | ||
level=0; | ||
for (int k=0;k<n;k++){ | ||
double x1=xyz1[k*3+0]; | ||
double y1=xyz1[k*3+1]; | ||
double z1=xyz1[k*3+2]; | ||
for (int l=0;l<m;l++){ | ||
double x2=xyz2[l*3+0]; | ||
double y2=xyz2[l*3+1]; | ||
double z2=xyz2[l*3+2]; | ||
weight[k*m+l]=expf(level*((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)+(z1-z2)*(z1-z2)))*saturatedr[l]; | ||
} | ||
} | ||
std::vector<double> ss(m,1e-9); | ||
for (int k=0;k<n;k++){ | ||
double s=1e-9; | ||
for (int l=0;l<m;l++){ | ||
s+=weight[k*m+l]; | ||
} | ||
for (int l=0;l<m;l++){ | ||
weight[k*m+l]=weight[k*m+l]/s*saturatedl[k]; | ||
} | ||
for (int l=0;l<m;l++) | ||
ss[l]+=weight[k*m+l]; | ||
} | ||
for (int l=0;l<m;l++){ | ||
double s=ss[l]; | ||
double r=std::min(saturatedr[l]/s,1.0); | ||
ss[l]=r; | ||
} | ||
std::vector<double> ss2(m,0); | ||
for (int k=0;k<n;k++){ | ||
double s=0; | ||
for (int l=0;l<m;l++){ | ||
weight[k*m+l]*=ss[l]; | ||
s+=weight[k*m+l]; | ||
ss2[l]+=weight[k*m+l]; | ||
} | ||
saturatedl[k]=std::max(saturatedl[k]-s,0.0); | ||
} | ||
for (int k=0;k<n*m;k++) | ||
match[k]+=weight[k]; | ||
for (int l=0;l<m;l++){ | ||
saturatedr[l]=std::max(saturatedr[l]-ss2[l],0.0); | ||
} | ||
} | ||
xyz1+=n*3; | ||
xyz2+=m*3; | ||
match+=n*m; | ||
} | ||
} | ||
void matchcost_cpu(int b,int n,int m,const float * xyz1,const float * xyz2,const float * match,float * cost){ | ||
for (int i=0;i<b;i++){ | ||
double s=0; | ||
for (int j=0;j<n;j++) | ||
for (int k=0;k<m;k++){ | ||
float x1=xyz1[j*3+0]; | ||
float y1=xyz1[j*3+1]; | ||
float z1=xyz1[j*3+2]; | ||
float x2=xyz2[k*3+0]; | ||
float y2=xyz2[k*3+1]; | ||
float z2=xyz2[k*3+2]; | ||
float d=sqrtf((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)+(z2-z1)*(z2-z1))*match[j*m+k]; | ||
s+=d; | ||
} | ||
cost[0]=s; | ||
xyz1+=n*3; | ||
xyz2+=m*3; | ||
match+=n*m; | ||
cost+=1; | ||
} | ||
} | ||
void matchcostgrad_cpu(int b,int n,int m,const float * xyz1,const float * xyz2,const float * match,float * grad1,float * grad2){ | ||
for (int i=0;i<b;i++){ | ||
for (int j=0;j<n;j++) | ||
grad1[j*3+0]=0; | ||
for (int j=0;j<m;j++){ | ||
float sx=0,sy=0,sz=0; | ||
for (int k=0;k<n;k++){ | ||
float x2=xyz2[j*3+0]; | ||
float y2=xyz2[j*3+1]; | ||
float z2=xyz2[j*3+2]; | ||
float x1=xyz1[k*3+0]; | ||
float y1=xyz1[k*3+1]; | ||
float z1=xyz1[k*3+2]; | ||
float d=std::max(sqrtf((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)+(z2-z1)*(z2-z1)),1e-20f); | ||
float dx=match[k*m+j]*((x2-x1)/d); | ||
float dy=match[k*m+j]*((y2-y1)/d); | ||
float dz=match[k*m+j]*((z2-z1)/d); | ||
grad1[k*3+0]-=dx; | ||
grad1[k*3+1]-=dy; | ||
grad1[k*3+2]-=dz; | ||
sx+=dx; | ||
sy+=dy; | ||
sz+=dz; | ||
} | ||
grad2[j*3+0]=sx; | ||
grad2[j*3+1]=sy; | ||
grad2[j*3+2]=sz; | ||
} | ||
xyz1+=n*3; | ||
xyz2+=m*3; | ||
match+=n*m; | ||
grad1+=n*3; | ||
grad2+=m*3; | ||
} | ||
} | ||
void approxmatchLauncher(int b,int n,int m,const float * xyz1,const float * xyz2,float * match,float * temp); | ||
void matchcostLauncher(int b,int n,int m,const float * xyz1,const float * xyz2,const float * match,float * out); | ||
void matchcostgradLauncher(int b,int n,int m,const float * xyz1,const float * xyz2,const float * match,float * grad1,float * grad2); | ||
|
||
class ApproxMatchGpuOp: public OpKernel{ | ||
public: | ||
explicit ApproxMatchGpuOp(OpKernelConstruction* context):OpKernel(context){} | ||
void Compute(OpKernelContext * context)override{ | ||
const Tensor& xyz1_tensor=context->input(0); | ||
OP_REQUIRES(context,xyz1_tensor.dims()==3 && xyz1_tensor.shape().dim_size(2)==3,errors::InvalidArgument("ApproxMatch expects (batch_size,num_points,3) xyz1 shape")); | ||
auto xyz1_flat=xyz1_tensor.flat<float>(); | ||
const float * xyz1=&(xyz1_flat(0)); | ||
int b=xyz1_tensor.shape().dim_size(0); | ||
int n=xyz1_tensor.shape().dim_size(1); | ||
//OP_REQUIRES(context,n<=4096,errors::InvalidArgument("ApproxMatch handles at most 4096 dataset points")); | ||
|
||
const Tensor& xyz2_tensor=context->input(1); | ||
OP_REQUIRES(context,xyz2_tensor.dims()==3 && xyz2_tensor.shape().dim_size(2)==3 && xyz2_tensor.shape().dim_size(0)==b,errors::InvalidArgument("ApproxMatch expects (batch_size,num_points,3) xyz2 shape, and batch_size must match")); | ||
int m=xyz2_tensor.shape().dim_size(1); | ||
//OP_REQUIRES(context,m<=1024,errors::InvalidArgument("ApproxMatch handles at most 1024 query points")); | ||
auto xyz2_flat=xyz2_tensor.flat<float>(); | ||
const float * xyz2=&(xyz2_flat(0)); | ||
Tensor * match_tensor=NULL; | ||
OP_REQUIRES_OK(context,context->allocate_output(0,TensorShape{b,m,n},&match_tensor)); | ||
auto match_flat=match_tensor->flat<float>(); | ||
float * match=&(match_flat(0)); | ||
Tensor temp_tensor; | ||
OP_REQUIRES_OK(context,context->allocate_temp(DataTypeToEnum<float>::value,TensorShape{b,(n+m)*2},&temp_tensor)); | ||
auto temp_flat=temp_tensor.flat<float>(); | ||
float * temp=&(temp_flat(0)); | ||
approxmatchLauncher(b,n,m,xyz1,xyz2,match,temp); | ||
} | ||
}; | ||
REGISTER_KERNEL_BUILDER(Name("ApproxMatch").Device(DEVICE_GPU), ApproxMatchGpuOp); | ||
class ApproxMatchOp: public OpKernel{ | ||
public: | ||
explicit ApproxMatchOp(OpKernelConstruction* context):OpKernel(context){} | ||
void Compute(OpKernelContext * context)override{ | ||
const Tensor& xyz1_tensor=context->input(0); | ||
OP_REQUIRES(context,xyz1_tensor.dims()==3 && xyz1_tensor.shape().dim_size(2)==3,errors::InvalidArgument("ApproxMatch expects (batch_size,num_points,3) xyz1 shape")); | ||
auto xyz1_flat=xyz1_tensor.flat<float>(); | ||
const float * xyz1=&(xyz1_flat(0)); | ||
int b=xyz1_tensor.shape().dim_size(0); | ||
int n=xyz1_tensor.shape().dim_size(1); | ||
//OP_REQUIRES(context,n<=4096,errors::InvalidArgument("ApproxMatch handles at most 4096 dataset points")); | ||
|
||
const Tensor& xyz2_tensor=context->input(1); | ||
OP_REQUIRES(context,xyz2_tensor.dims()==3 && xyz2_tensor.shape().dim_size(2)==3 && xyz2_tensor.shape().dim_size(0)==b,errors::InvalidArgument("ApproxMatch expects (batch_size,num_points,3) xyz2 shape, and batch_size must match")); | ||
int m=xyz2_tensor.shape().dim_size(1); | ||
//OP_REQUIRES(context,m<=1024,errors::InvalidArgument("ApproxMatch handles at most 1024 query points")); | ||
auto xyz2_flat=xyz2_tensor.flat<float>(); | ||
const float * xyz2=&(xyz2_flat(0)); | ||
Tensor * match_tensor=NULL; | ||
OP_REQUIRES_OK(context,context->allocate_output(0,TensorShape{b,m,n},&match_tensor)); | ||
auto match_flat=match_tensor->flat<float>(); | ||
float * match=&(match_flat(0)); | ||
approxmatch_cpu(b,n,m,xyz1,xyz2,match); | ||
} | ||
}; | ||
REGISTER_KERNEL_BUILDER(Name("ApproxMatch").Device(DEVICE_CPU), ApproxMatchOp); | ||
class MatchCostGpuOp: public OpKernel{ | ||
public: | ||
explicit MatchCostGpuOp(OpKernelConstruction* context):OpKernel(context){} | ||
void Compute(OpKernelContext * context)override{ | ||
const Tensor& xyz1_tensor=context->input(0); | ||
OP_REQUIRES(context,xyz1_tensor.dims()==3 && xyz1_tensor.shape().dim_size(2)==3,errors::InvalidArgument("MatchCost expects (batch_size,num_points,3) xyz1 shape")); | ||
auto xyz1_flat=xyz1_tensor.flat<float>(); | ||
const float * xyz1=&(xyz1_flat(0)); | ||
int b=xyz1_tensor.shape().dim_size(0); | ||
int n=xyz1_tensor.shape().dim_size(1); | ||
|
||
const Tensor& xyz2_tensor=context->input(1); | ||
OP_REQUIRES(context,xyz2_tensor.dims()==3 && xyz2_tensor.shape().dim_size(2)==3 && xyz2_tensor.shape().dim_size(0)==b,errors::InvalidArgument("MatchCost expects (batch_size,num_points,3) xyz2 shape, and batch_size must match")); | ||
int m=xyz2_tensor.shape().dim_size(1); | ||
auto xyz2_flat=xyz2_tensor.flat<float>(); | ||
const float * xyz2=&(xyz2_flat(0)); | ||
|
||
const Tensor& match_tensor=context->input(2); | ||
OP_REQUIRES(context,match_tensor.dims()==3 && match_tensor.shape().dim_size(0)==b && match_tensor.shape().dim_size(1)==m && match_tensor.shape().dim_size(2)==n,errors::InvalidArgument("MatchCost expects (batch_size,#query,#dataset) match shape")); | ||
auto match_flat=match_tensor.flat<float>(); | ||
const float * match=&(match_flat(0)); | ||
|
||
Tensor * cost_tensor=NULL; | ||
OP_REQUIRES_OK(context,context->allocate_output(0,TensorShape{b},&cost_tensor)); | ||
auto cost_flat=cost_tensor->flat<float>(); | ||
float * cost=&(cost_flat(0)); | ||
matchcostLauncher(b,n,m,xyz1,xyz2,match,cost); | ||
} | ||
}; | ||
REGISTER_KERNEL_BUILDER(Name("MatchCost").Device(DEVICE_GPU), MatchCostGpuOp); | ||
class MatchCostOp: public OpKernel{ | ||
public: | ||
explicit MatchCostOp(OpKernelConstruction* context):OpKernel(context){} | ||
void Compute(OpKernelContext * context)override{ | ||
const Tensor& xyz1_tensor=context->input(0); | ||
OP_REQUIRES(context,xyz1_tensor.dims()==3 && xyz1_tensor.shape().dim_size(2)==3,errors::InvalidArgument("MatchCost expects (batch_size,num_points,3) xyz1 shape")); | ||
auto xyz1_flat=xyz1_tensor.flat<float>(); | ||
const float * xyz1=&(xyz1_flat(0)); | ||
int b=xyz1_tensor.shape().dim_size(0); | ||
int n=xyz1_tensor.shape().dim_size(1); | ||
|
||
const Tensor& xyz2_tensor=context->input(1); | ||
OP_REQUIRES(context,xyz2_tensor.dims()==3 && xyz2_tensor.shape().dim_size(2)==3 && xyz2_tensor.shape().dim_size(0)==b,errors::InvalidArgument("MatchCost expects (batch_size,num_points,3) xyz2 shape, and batch_size must match")); | ||
int m=xyz2_tensor.shape().dim_size(1); | ||
auto xyz2_flat=xyz2_tensor.flat<float>(); | ||
const float * xyz2=&(xyz2_flat(0)); | ||
|
||
const Tensor& match_tensor=context->input(2); | ||
OP_REQUIRES(context,match_tensor.dims()==3 && match_tensor.shape().dim_size(0)==b && match_tensor.shape().dim_size(1)==m && match_tensor.shape().dim_size(2)==n,errors::InvalidArgument("MatchCost expects (batch_size,#query,#dataset) match shape")); | ||
auto match_flat=match_tensor.flat<float>(); | ||
const float * match=&(match_flat(0)); | ||
|
||
Tensor * cost_tensor=NULL; | ||
OP_REQUIRES_OK(context,context->allocate_output(0,TensorShape{b},&cost_tensor)); | ||
auto cost_flat=cost_tensor->flat<float>(); | ||
float * cost=&(cost_flat(0)); | ||
matchcost_cpu(b,n,m,xyz1,xyz2,match,cost); | ||
} | ||
}; | ||
REGISTER_KERNEL_BUILDER(Name("MatchCost").Device(DEVICE_CPU), MatchCostOp); | ||
|
||
class MatchCostGradGpuOp: public OpKernel{ | ||
public: | ||
explicit MatchCostGradGpuOp(OpKernelConstruction* context):OpKernel(context){} | ||
void Compute(OpKernelContext * context)override{ | ||
const Tensor& xyz1_tensor=context->input(0); | ||
OP_REQUIRES(context,xyz1_tensor.dims()==3 && xyz1_tensor.shape().dim_size(2)==3,errors::InvalidArgument("MatchCostGrad expects (batch_size,num_points,3) xyz1 shape")); | ||
auto xyz1_flat=xyz1_tensor.flat<float>(); | ||
const float * xyz1=&(xyz1_flat(0)); | ||
int b=xyz1_tensor.shape().dim_size(0); | ||
int n=xyz1_tensor.shape().dim_size(1); | ||
|
||
const Tensor& xyz2_tensor=context->input(1); | ||
OP_REQUIRES(context,xyz2_tensor.dims()==3 && xyz2_tensor.shape().dim_size(2)==3 && xyz2_tensor.shape().dim_size(0)==b,errors::InvalidArgument("MatchCostGrad expects (batch_size,num_points,3) xyz2 shape, and batch_size must match")); | ||
int m=xyz2_tensor.shape().dim_size(1); | ||
auto xyz2_flat=xyz2_tensor.flat<float>(); | ||
const float * xyz2=&(xyz2_flat(0)); | ||
|
||
const Tensor& match_tensor=context->input(2); | ||
OP_REQUIRES(context,match_tensor.dims()==3 && match_tensor.shape().dim_size(0)==b && match_tensor.shape().dim_size(1)==m && match_tensor.shape().dim_size(2)==n,errors::InvalidArgument("MatchCost expects (batch_size,#query,#dataset) match shape")); | ||
auto match_flat=match_tensor.flat<float>(); | ||
const float * match=&(match_flat(0)); | ||
|
||
Tensor * grad1_tensor=NULL; | ||
OP_REQUIRES_OK(context,context->allocate_output(0,TensorShape{b,n,3},&grad1_tensor)); | ||
auto grad1_flat=grad1_tensor->flat<float>(); | ||
float * grad1=&(grad1_flat(0)); | ||
Tensor * grad2_tensor=NULL; | ||
OP_REQUIRES_OK(context,context->allocate_output(1,TensorShape{b,m,3},&grad2_tensor)); | ||
auto grad2_flat=grad2_tensor->flat<float>(); | ||
float * grad2=&(grad2_flat(0)); | ||
matchcostgradLauncher(b,n,m,xyz1,xyz2,match,grad1,grad2); | ||
} | ||
}; | ||
REGISTER_KERNEL_BUILDER(Name("MatchCostGrad").Device(DEVICE_GPU), MatchCostGradGpuOp); | ||
class MatchCostGradOp: public OpKernel{ | ||
public: | ||
explicit MatchCostGradOp(OpKernelConstruction* context):OpKernel(context){} | ||
void Compute(OpKernelContext * context)override{ | ||
const Tensor& xyz1_tensor=context->input(0); | ||
OP_REQUIRES(context,xyz1_tensor.dims()==3 && xyz1_tensor.shape().dim_size(2)==3,errors::InvalidArgument("MatchCost expects (batch_size,num_points,3) xyz1 shape")); | ||
auto xyz1_flat=xyz1_tensor.flat<float>(); | ||
const float * xyz1=&(xyz1_flat(0)); | ||
int b=xyz1_tensor.shape().dim_size(0); | ||
int n=xyz1_tensor.shape().dim_size(1); | ||
|
||
const Tensor& xyz2_tensor=context->input(1); | ||
OP_REQUIRES(context,xyz2_tensor.dims()==3 && xyz2_tensor.shape().dim_size(2)==3 && xyz2_tensor.shape().dim_size(0)==b,errors::InvalidArgument("MatchCost expects (batch_size,num_points,3) xyz2 shape, and batch_size must match")); | ||
int m=xyz2_tensor.shape().dim_size(1); | ||
auto xyz2_flat=xyz2_tensor.flat<float>(); | ||
const float * xyz2=&(xyz2_flat(0)); | ||
|
||
const Tensor& match_tensor=context->input(2); | ||
OP_REQUIRES(context,match_tensor.dims()==3 && match_tensor.shape().dim_size(0)==b && match_tensor.shape().dim_size(1)==m && match_tensor.shape().dim_size(2)==n,errors::InvalidArgument("MatchCost expects (batch_size,#query,#dataset) match shape")); | ||
auto match_flat=match_tensor.flat<float>(); | ||
const float * match=&(match_flat(0)); | ||
|
||
Tensor * grad1_tensor=NULL; | ||
OP_REQUIRES_OK(context,context->allocate_output(0,TensorShape{b,n,3},&grad1_tensor)); | ||
auto grad1_flat=grad1_tensor->flat<float>(); | ||
float * grad1=&(grad1_flat(0)); | ||
Tensor * grad2_tensor=NULL; | ||
OP_REQUIRES_OK(context,context->allocate_output(1,TensorShape{b,m,3},&grad2_tensor)); | ||
auto grad2_flat=grad2_tensor->flat<float>(); | ||
float * grad2=&(grad2_flat(0)); | ||
matchcostgrad_cpu(b,n,m,xyz1,xyz2,match,grad1,grad2); | ||
} | ||
}; | ||
REGISTER_KERNEL_BUILDER(Name("MatchCostGrad").Device(DEVICE_CPU), MatchCostGradOp); |
Oops, something went wrong.