The scripts to run the constrained Autocovariance Least Squares technique for two examples are contained in this repository.
-
gen_data_msd
- Creates simulated datasets of the msd dynamics with process and measurement noise
- Generates ALS inputs with initial suboptimal process noise covariance,
$Q$ and measurement noise covariance,$R$ .
-
run_als_msd
- Run script for constrained ALS problem
- Calls setup_ALS_msd.m with defines lags and other ALS inputs
-
als_msd
- ALS class with mass spring damper constraints for 7 temperature problem
-
plot_lags_msd
- Plots results from constrained ALS problem
- Saves mean and standard deviation of
$Q$ and$R$ solutions - Figure 2
-
plot_QR_T
- Figure 5
- Phi_f: Figure 3
-
wtData_setup
- Loads wind tunnel datasets:
- Relies on models located here:
- Generates ALS inputs with initial suboptimal process noise covariance,
$Q$ and measurement noise covariance,$R$ .
-
run_als_MARGE
- Run script for constrained ALS problem
- Calls setup_ALS_MARGE.m with defines lags and other ALS inputs
-
als_MARGE
- ALS class with MARGE constraints for 5 dynamic pressure problem
-
plot_lags_MARGE
- Plots results from constrained ALS problem
- Saves mean and standard deviation of
$Q$ and$R$ solutions
-
plot_QR_qbar
- Figure 6
- Relies on unconstrained ALS solutions:d
-
wtData_ALSest
- Figures 7-10
- Relies on wind tunnel data: