Skip to content

Latest commit

 

History

History
48 lines (40 loc) · 3.16 KB

File metadata and controls

48 lines (40 loc) · 3.16 KB

Autocovariance Least Squares with Constrained Noise Covariance Model Identification


The scripts to run the constrained Autocovariance Least Squares technique for two examples are contained in this repository.

Mass Spring Damper Example

image

  1. gen_data_msd
    • Creates simulated datasets of the msd dynamics with process and measurement noise
    • Generates ALS inputs with initial suboptimal process noise covariance, $Q$ and measurement noise covariance, $R$.
  2. run_als_msd
    • Run script for constrained ALS problem
    • Calls setup_ALS_msd.m with defines lags and other ALS inputs
    • als_msd
      • ALS class with mass spring damper constraints for 7 temperature problem
  3. plot_lags_msd
    • Plots results from constrained ALS problem
    • Saves mean and standard deviation of $Q$ and $R$ solutions
    • Figure 2
  4. plot_QR_T
    • Figure 5
  5. Phi_f: Figure 3

Model for Aeroelastic Response to Gust Excitation

image

  1. wtData_setup
    • Loads wind tunnel datasets:
    • Relies on models located here:
    • Generates ALS inputs with initial suboptimal process noise covariance, $Q$ and measurement noise covariance, $R$.
  2. run_als_MARGE
    • Run script for constrained ALS problem
    • Calls setup_ALS_MARGE.m with defines lags and other ALS inputs
    • als_MARGE
      • ALS class with MARGE constraints for 5 dynamic pressure problem
  3. plot_lags_MARGE
    • Plots results from constrained ALS problem
    • Saves mean and standard deviation of $Q$ and $R$ solutions
  4. plot_QR_qbar
    • Figure 6
    • Relies on unconstrained ALS solutions:d
  5. wtData_ALSest
    • Figures 7-10
    • Relies on wind tunnel data: