We would like to maintain a list of papers that utilize machine learning technologies to solve combinatorial optimization problems.
-
Machine Learning for Combinatorial Optimization: a Methodological Tour d'horizon. EJOR, 2020. paper
Bengio, Yoshua and Lodi, Andrea and Prouvost, Antoine.
-
Reinforcement Learning for Combinatorial Optimization: A Survey. Arxiv, 2020. paper
Mazyavkina, Nina and Sviridov, Sergey and Ivanov, Sergei and Burnaev, Evgeny.
-
Learning Graph Matching and Related Combinatorial Optimization Problems. IJCAI, 2020. paper
Yan, Junchi and Yang, Shuang, and Hancock, Edwin R.
-
Revised Note on Learning Algorithms for Quadratic Assignment with Graph Neural Networks Arxiv, 2017. paper, code
Nowak, Alex and Villar, Soledad and Bandeira, S. Afonso and Bruna, Joan
-
Deep Learning of Graph Matching. CVPR, 2018. paper
Zanfir, Andrei and Sminchisescu, Cristian
-
Learning Combinatorial Embedding Networks for Deep Graph Matching. ICCV, 2019. paper, code
Wang, Runzhong and Yan, Junchi and Yang, Xiaokang
-
Deep Graphical Feature Learning for the Feature Matching Problem. ICCV, 2019. paper
Zhang, Zhen and Lee, Wee Sun
-
GLMNet: Graph Learning-Matching Networks for Feature Matching. Arxiv, 2019. paper
Jiang, Bo and Sun, Pengfei and Tang, Jin and Luo, Bin
-
Neural Graph Matching Network: Learning Lawler's Quadratic Assignment Problem with Extension to Hypergraph and Multiple-graph Matching. Arxiv, 2019. paper
Wang, Runzhong and Yan, Junchi and Yang, Xiaokang
-
Learning deep graph matching with channel-independent embedding and Hungarian attention. ICLR, 2020. paper
Yu, Tianshu and Wang, Runzhong and Yan, Junchi and Li, Baoxin
-
Deep Graph Matching Consensus. ICLR, 2020. paper
Fey, Matthias and Lenssen, Jan E. and Morris, Christopher and Masci, Jonathan and Kriege, Nils M.
-
Graduated Assignment for Joint Multi-Graph Matching and Clustering with Application to Unsupervised Graph Matching Network Learning. NeurIPS, 2020. paper
Wang, Runzhong and Yan, Junchi and Yang, Xiaokang
-
Combinatorial Learning of Robust Deep Graph Matching: An Embedding Based Approach. TPAMI, 2020. paper
Wang, Runzhong and Yan, Junchi and Yang, Xiaokang
-
Deep Graph Matching via Blackbox Differentiation of Combinatorial Solvers. ECCV, 2020. paper, code
Rolinek, Michal and Swoboda, Paul and Zietlow, Dominik and Paulus, Anselm and Musil, Vit and Martius, Georg
-
Deep Reinforcement Learning of Graph Matching. Arxiv, 2020. paper
Liu, Chang and Wang, Runzhong and Jiang, Zetian and Yan, Junchi
-
Learning Combinatorial Optimization Algorithms over Graphs. NeurIPS, 2017. paper
Dai, Hanjun and Khalil, Elias B and Zhang, Yuyu and Dilkina, Bistra and Song, Le
-
POMO: Policy Optimization with Multiple Optima for Reinforcement Learning. NeurIPS, 2018. paper
Kwon, Yeong-Dae and Choo, Jinho and Kim, Byoungjip and Yoon, Iljoo and Min, Seungjai and Gwon, Youngjune.
-
Learning Heuristics for the TSP by Policy Gradient CPAIOR, 2018. paper, code
Michel DeudonPierre CournutAlexandre Lacoste
-
Attention, Learn to Solve Routing Problems! ICLR, 2019. paper
Kool, Wouter and Van Hoof, Herke and Welling, Max.
-
Learning to Solve NP-Complete Problems: A Graph Neural Network for Decision TSP. AAAI, 2019. paper
Prates, Marcelo and Avelar, Pedro HC and Lemos, Henrique and Lamb, Luis C and Vardi, Moshe Y.
-
An Efficient Graph Convolutional Network Technique for the Travelling Salesman Problem Arxiv, 2019. paper, code
Chaitanya K. Joshi, Thomas Laurent, Xavier Bresson
-
Generalize a Small Pre-trained Model to Arbitrarily Large TSP Instances Zhang-Hua. Arxiv, 2020. paper
Fu, Zhang-Hua and Qiu, Kai-Bin and Zha, Hongyuan.
-
Differentiation of Blackbox Combinatorial Solvers ICLR, 2020. paper, code
Marin Vlastelica, Anselm Paulus, Vít Musil, Georg Martius, Michal Rolínek
-
The Transformer Network for the Traveling Salesman Problem IPAM, 2021. paper
Xavier Bresson,Thomas Laurent
-
Learning to Perform Local Rewriting for Combinatorial Optimization. NeurIPS, 2019. paper, code
Chen, Xinyun and Tian, Yuandong.
-
Deep Reinforcement Learning for the Electric Vehicle Routing Problem with Time Windows. Arxiv, 2020. paper
Lin, Bo and Ghaddar, Bissan and Nathwani, Jatin.
-
A Learning-based Iterative Method for Solving Vehicle Routing Problems ICLR, 2020. paper
Lu, Hao and Zhang, Xingwen and Yang, Shuang
-
Dynamic pickup and delivery problems EJOR, 2010. paper
Berbeglia, Gerardo and Cordeau, Jean-FranCois and Laporte, Gilbert
-
Resource Management with Deep Reinforcement Learning. HotNets, 2016. paper
Mao, Hongzi and Alizadeh, Mohammad and Menache, Ishai and Kandula, Srikanth.
-
Learning Scheduling Algorithms for Data Processing Clusters SIGCOMM, 2019. paper, code
Mao, Hongzi and Schwarzkopf, Malte and Venkatakrishnan, Bojja Shaileshh and Meng, Zili and Alizadeh, Mohammad.
-
Smart Resource Allocation for Mobile Edge Computing: A Deep Reinforcement Learning Approach IEEE Transactions on Emerging Topics in Computing, 2019. Paper
Jiadai; Lei Zhao; Jiajia Liu; Nei Kato
-
Learning to Dispatch for Job Shop Scheduling via Deep Reinforcement Learning. NeurIPS, 2020. paper, code
Zhang, Cong and Song, Wen and Cao, Zhiguang and Zhang, Jie and Tan, Puay Siew and Xu, Chi.
-
The Complexity Landscape of Resource-Constrained Scheduling IJCAI, 2020. paper
Robert Ganian, Thekla Hamm, Guillaume Mescoff
-
Small Boxes Big Data: A Deep Learning Approach to Optimize Variable Sized Bin Packing BigDataService, 2017. paper
Mao, Feng and Blanco, Edgar and Fu, Mingang and Jain, Rohit and Gupta, Anurag and Mancel, Sebastien and Yuan, Rong and Guo, Stephen and Kumar, Sai and Tian, Yayang
-
Solving a New 3D Bin Packing Problem with Deep Reinforcement Learning Method Arxiv, 2017. paper
Hu, Haoyuan and Zhang, Xiaodong and Yan, Xiaowei and Wang, Longfei and Xu, Yinghui
-
A Multi-task Selected Learning Approach for Solving 3D Bin Packing Problem. Arxiv, 2018. paper
Duan, Lu and Hu, Haoyuan and Qian, Yu and Gong, Yu and Zhang, Xiaodong and Xu, Yinghui and Wei, Jiangwen.
-
Ranked Reward: Enabling Self-Play Reinforcement Learning for Combinatorial Optimization Alexandre Arxiv, 2018. paper
Laterre, Alexandre and Fu, Yunguan and Jabri, Mohamed Khalil and Cohen, Alain-Sam and Kas, David and Hajjar, Karl and Dahl, Torbjorn S and Kerkeni, Amine and Beguir, Karim
-
A Data-Driven Approach for Multi-level Packing Problems in Manufacturing Industry KDD, 2019. paper
Chen, Lei and Tong, Xialiang and Yuan, Mingxuan and Zeng, Jia and Chen, Lei
-
Solving Packing Problems by Conditional Query Learning OpenReview, 2019. paper
Li, Dongda and Ren, Changwei and Gu, Zhaoquan and Wang, Yuexuan and Lau, Francis
-
RePack: Dense Object Packing Using Deep CNN with Reinforcement Learning CACS, 2019. paper
Chu, Yu-Cheng and Lin, Horng-Horng
-
Online 3D Bin Packing with Constrained Deep Reinforcement Learning. Arxiv, 2020. paper
Zhao, Hang and She, Qijin and Zhu, Chenyang and Yang, Yin and Xu, Kai.
-
A Generalized Reinforcement Learning Algorithm for Online 3D Bin-Packing. Arxiv, 2020. paper
Verma, Richa and Singhal, Aniruddha and Khadilkar, Harshad and Basumatary, Ansuma and Nayak, Siddharth and Singh, Harsh Vardhan and Kumar, Swagat and Sinha, Rajesh.
-
Robot Packing with Known Items and Nondeterministic Arrival Order. TASAE, 2020. paper
Wang, Fan and Hauser, Kris.
-
TAP-Net: Transport-and-Pack using Reinforcement Learning. TOG, 2020. paper, code
Hu, Ruizhen and Xu, Juzhan and Chen, Bin and Gong, Minglun and Zhang, Hao and Huang, Hui.
-
Simultaneous Planning for Item Picking and Placing by Deep Reinforcement Learning IROS, 2020. paper
Tanaka, Tatsuya and Kaneko, Toshimitsu and Sekine, Masahiro and Tangkaratt, Voot and Sugiyama, Masashi
-
Monte Carlo Tree Search on Perfect Rectangle Packing Problem Instances GECCO, 2020. paper
Pejic, Igor and van den Berg, Daan
-
PackIt: A Virtual Environment for Geometric Planning ICML, 2020. paper
Goyal, Ankit and Deng, Jia
-
SimGNN - A Neural Network Approach to Fast Graph Similarity Computation WSDM, 2019. paper, code
Bai, Yunsheng and Ding, Hao and Bian, Song and Chen, Ting and Sun, Yizhou and Wang, Wei
-
Graph Matching Networks for Learning the Similarity of Graph Structured Objects ICML, 2019. paper
Li, Yujia and Gu, Chenjie and Dullien, Thomas and Vinyals, Oriol and Kohli, Pushmeet
-
Combinatorial Learning of Graph Edit Distance via Dynamic Embedding. CVPR, 2021. paper
Wang, Runzhong and Zhang, Tianqi and Yu, Tianshu and Yan, Junchi and Yang, Xiaokang.
-
Deep Learning-based Hybrid Graph-Coloring Algorithm for Register Allocation. Arxiv, 2019. paper
Das, Dibyendu and Ahmad, Shahid Asghar and Venkataramanan, Kumar.
-
Fast Detection of Maximum Common Subgraph via Deep Q-Learning. Arxiv, 2020. paper
Bai, Yunsheng and Xu, Derek and Wang, Alex and Gu, Ken and Wu, Xueqing and Marinovic, Agustin and Ro, Christopher and Sun, Yizhou and Wang, Wei.
-
Learning Heuristics over Large Graphs via Deep Reinforcement Learning. NeurIPS, 2020. paper
Mittal, Akash and Dhawan, Anuj and Manchanda, Sahil and Medya, Sourav and Ranu, Sayan and Singh, Ambuj.
-
Combinatorial Optimization with Graph Convolutional Networks and Guided Tree Search. NeurIPS, 2018. paper
Li, Zhuwen and Chen, Qifeng and Koltun, Vladlen.
-
Exploratory Combinatorial Optimization with Reinforcement Learning. AAAI, 2020. paper
LBarrett, Thomas and Clements, William and Foerster, Jakob and Lvovsky, Alex.
-
Erdos Goes Neural: an Unsupervised Learning Framework for Combinatorial Optimization on Graphs. NeurIPS, 2020. paper
Karalias, Nikolaos and Loukas, Andreas
-
Improving Learning to Branch via Reinforcement Learning. NeurIPS Workshop, 2020. paper
Sun, Haoran and Chen, Wenbo and Li, Hui and Song, Le.
-
Causal Discovery with Reinforcement Learning. ICLR, 2020. paper
Zhu, Shengyu and Ng, Ignavier and Chen, Zhitang.
-
First-Order Problem Solving through Neural MCTS based Reinforcement Learning. Arxiv, 2021. paper
Xu, Ruiyang and Kadam, Prashank and Lieberherr, Karl.
-
Learning Local Search Heuristics for Boolean Satisfiability. NeurIPS, 2019. paper
Yolcu, Emre and Poczos, Barnabas
-
Differentiable Learning of Submodular Models NeurIPS, 2017. paper, code
Josip Djolonga, Andreas Krause
-
Melding the Data-Decisions Pipeline: Decision-Focused Learning for Combinatorial Optimization AAAI, 2019. paper
Bryan Wilder, Bistra Dilkina, Milind Tambe
-
MIPaaL: Mixed Integer Program as a Layer AAAI, 2020. paper, code
Aaron Ferber, Bryan Wilder, Bistra Dilkina, Milind Tambe
-
Smart Predict-and-Optimize for Hard Combinatorial Optimization Problems AAAI, 2020. paper, code
Jaynta Mandi, Emir Demirovi, Peter. J Stuckey, Tias Guns
-
Differentiation of blackbox combinatorial solvers ICLR, 2020. paper, code
Marin Vlastelica Pogani, Anselm Paulus, Vit Musil, Georg Martius, Michal Rolinek
-
Interior Point Solving for LP-based prediction+optimization NeurIPS, 2020. paper, code
Jayanta Mandi, Tias Guns